int sx, sy; float density = 0.5; int[][][] world; void setup() { size(200, 200); frameRate(20); sx = width; sy = height; world = new int[sx][sy][2]; stroke(255); // Set random cells to 'on' for (int i = 0; i < sx * sy * density; i++) { world[(int)random(sx)][(int)random(sy)][1] = 1; } } void draw() { background(0); // Drawing and update cycle for (int x = 0; x < sx; x=x+1) { for (int y = 0; y < sy; y=y+1) { //if (world[x][y][1] == 1) // Change recommended by The.Lucky.Mutt if ((world[x][y][1] == 1) || (world[x][y][1] == 0 && world[x][y][0] == 1)) { world[x][y][0] = 1; point(x, y); } if (world[x][y][1] == -1) { world[x][y][0] = 0; } world[x][y][1] = 0; } } // Birth and death cycle if(mousePressed) { for (int x = 0; x < sx; x=x+1) { for (int y = 0; y < sy; y=y+1) { int count = neighbors(x, y); if (count == 1 && world[x][y][0] == 0) { world[x][y][1] = 1; } if ((count < 2 || count > 3) && world[x][y][0] == 1) { world[x][y][1] = -1; } } } } else { for (int x = 0; x < sx; x=x+1) { for (int y = 0; y < sy; y=y+1) { int count = neighbors(x, y); if (count == 3 && world[x][y][0] == 0) { world[x][y][1] = 1; } if ((count < 2 || count > 3) && world[x][y][0] == 1) { world[x][y][1] = -1; } } } } } // Count the number of adjacent cells 'on' int neighbors(int x, int y) { return world[(x + 1) % sx][y][0] + world[x][(y + 1) % sy][0] + world[(x + sx - 1) % sx][y][0] + world[x][(y + sy - 1) % sy][0] + world[(x + 1) % sx][(y + 1) % sy][0] + world[(x + sx - 1) % sx][(y + 1) % sy][0] + world[(x + sx - 1) % sx][(y + sy - 1) % sy][0] + world[(x + 1) % sx][(y + sy - 1) % sy][0]; }