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ABSTRACT 

This paper describes an ongoing research project on the use of dynamically self-
organizing structures in design, mainly influenced by the increasing number of 
irregular spatial constructions in current architecture. The focus of this work however, 
is not on the generation of form, but on the organisation of constructive components 
within a given form and their optimisation according to functional and structural 
requirements. To explain the approach a real-world example is presented whose 
constructive design has been finished in the year 2003 with the help of a self-
organising process and which is about to be realized in the Netherlands. The very 
encouraging outcomes of this test case led to further examinations of the principles 
and finally to the implementation of a programming toolbox that enables rapid 
development of dynamic simulation software. The concepts of this toolbox are 
described and exemplified through the presentation of its first application, the 
generation of an adaptive quad-mesh that defines the structure for a trade-fair 
pavilion.  
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INTRODUCTION 

There seems to be an increasing number of irregular spatial constructions in current 
architecture, which are readily explained by the help of metaphors such as “a forest of 
columns”, “a crystalline façade”, “a bird's nest” or “bubbles in a foam bath”. Though 
those images – all of them quoted from descriptions of recently built or planned 
architecture (ARUP 2004; Balmond et al. 2002; Bull 2004) – give a powerful picture 
of the designers’ intentions, they leave a long and thorny way to formally defining, 
detailing and finally building the structure.  

The proposition of my research is to take those images literally and look at the 
processes that lead to the referred phenomena in nature: self-organizing adaptive 
systems and their ability to generate complex configurations without central control. If 
it were possible to turn the design process “downside up” those bottom-up methods 
could be used to solve the complex problems arising when trying to define the 
“formal” configuration of what Balmond calls “informal” design. The examinations 
are based on the wide range of research in the field of emergence over the past years, 
which give surprising insights on how nature is able to generate highly efficient 
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structures, be it the growth of crystals, the organization of cells or the formation of 
swarms (Holland 1998; Johnson 2002; Kennedy et al. 2001).  

Since there is no way (yet) to grow real buildings, experimenting with such concepts 
is only possible by means of computer simulation. The metaphoric idea of the 
designer has to be translated into the computer model of a complex adaptive system 
that simulates interacting agents in a virtual environment. The simulation is not meant 
to be physically correct in terms of structural analysis, but it should behave as if the 
components were physical implementations of the metaphor, making it intuitively 
understandable for the user. The complexity of this model is deliberately much lower 
than that of the intended construction, allowing to present the results of the simulation 
to the user in real time, enabling him or her to directly interact with the emerging 
structures by adjusting parameters or influencing the position of single components. 
However it is possible to implement simple “rules of thumb” to ensure structural and 
functional integrity up to a certain degree. The simulation is used as a tool to explore 
the vast space of possible solutions spanned by the rules of the model.  

The approach was tested successfully on a real-life project, the “Groningen Twister” 
(Scheurer 2003), which is described in the next section to clarify the basic principles.  
The knowledge gained from this test case led to the development of a software 
toolbox, which allows rapid development of further software simulations for other 
projects. The concepts of this toolbox will be explained in detail by example of a 
second real-life application, a trade fair pavilion. 

A SWARM OF COLUMNS: THE GRONINGEN TWISTER 

In the year 2003 the office of Kees Christiaanse Architects & Planners (KCAP) 
together with Ove Arup & Partners in Amsterdam and the chair for CAAD at the ETH 
experimented with self-organizing structures for the Groningen Stadsbalkon to create 
“a forest of columns”, some 150 slender pillars with differing diameters, randomly 
dispersed and slightly inclined in different directions that hold up a large concrete 
slab. The structural implications of this design had been roughly calculated and 
approved by the engineers, but the mind-twisting task was to define the exact location, 
diameter and inclination of every single column so that it would not obstruct the 
predefined walking or cycling paths, the distance to neighbouring columns was 
compatible with the spanning and cantilevering capacity of the slab and its diameter 
was sufficient for the portion of the slab it was holding up. Consequently every local 
change in one column would propagate through the whole structure because it affected 
the parameters for the placement of its neighbours. And, of course, the total number of 
columns was not predefined but should be minimised to save costs. Since the 
placement was only controlled by local rules, it seemed to suggest itself to use the 
power of self organisation and leave the optimisation to the columns. 

Agent based simulation 

To simulate a process of self-organization, the above definition was translated into a 
computer simulation model where the columns resemble agents that are “living” in a 
habitat. They can adapt to their environment by moving, tilting and changing their 
diameter (which will increase or decrease the bearing capacity) within certain limits. 
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If an agent reaches the maximum strength and still can’t cope with the load, it may 
split into two agents of the smallest size, thus creating a new column in the habitat. If 
an agent reaches the minimum size it may eventually die, removing itself from the 
habitat (Fig. 2). The computer simulation was based on particle dynamics, a simple 
but powerful way of simulating the behaviour of objects that have a mass but no 
spatial extent (Witkin 1997). By connecting particles with damped springs, complex 
non-rigid structures can be easily simulated, as has been used for example in real time 
structural analysis (Martini 2001). The structure of the simulation model is shown in 
Fig. 1: The top and bottom ends of a column are particles connected by a spring, 
which tries to align them vertically (this spring resembles the actual column rendered 
in the 3D view). A circular area around the top marks the bearing capacity of the 
column, which is dependent on the column diameter. The tops are repelling each other 
by force fields which try to keep the distance so that the circles of neighbouring 
columns just touch. The edges of the slab and the expansion joints are linear repellers, 
pushing the column heads away, the centrelines of the paths do the same for the 
column feet. The openings in the slab are defined as repeller points.  

 
Fig. 1: Relations between habitat and agents in the Groningen Twister 

The growing, shrinking, dying and splitting of an agent is triggered when the pressure 
it experiences exceeds or falls short of defined threshold values. The pressure is 
simply accounted by adding up the pushing forces applied to the top end of the agent 
by neighbours and repellers.  

 
Fig. 2a-d: Growth and decline of the column agents within the habitat 

The simulation was programmed in Java with the Java 3D API to visualize the results 
in three dimensions. The model can be influenced interactively by changing the 
various parameters. It is also possible to pick single columns and drag them to desired 
locations while the simulation is running. When the model reaches a stable state, the 
results can be exported in various formats, ranging from a list of the column 
coordinates to a VRML-model.  
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Fig. 3: Screenshot of the running simulation 

The simulation model proved to be very successful and enabled the architects to 
develop a number of possible solutions that were complying with the rules in very 
short time. But programming the software took a considerable effort and due to the 
short timeframe many additional ideas that were developed could not be realized. 

ZORA: A TOOLBOX FOR SELF-ORGANISATION 

The experience gained with the Groningen project led to the development of a 
software tool-box that helps building similar simulation models at much lower effort. 
The intention was to have a basic set of components which can be quickly put together 
to form complex models without having to care too much about property editors, 3D 
rendering, export and synchronization issues. This tool-box – named ZORA – is a 
library of Java classes that enable rapid development of customized simulation 
models. Functionality for easy GUI building, real-time 3D-rendering and XML-
import/export are included in the basic object classes. This section will explain the 
system architecture. The next section displays the first application of the toolbox. 

Agents: The Simulation Model 

The ZORA simulation model is a hierarchical tree of interacting components. The 
nodes in the model tree can be directly derived from the following set of basic 
component classes: 

- The model is a special group component at the root of the model tree. It is 
controlling the time of the whole simulation model by sending update 
events to all the components at regular intervals. When receiving an update 
event, every component updates its state according to the given time step.  

- Particles are geometric objects defined by their location and mass without 
physical extent. They can be accelerated by forces and will subsequently 
change their location according to Newton’s laws upon receiving an update 
event. 

- Rigid bodies are geometric objects which have – in addition to particles – 
a physical extent and thus an orientation in space. Up to now, two types of 
rigid bodies have been implemented: the plane and the block (cuboid) type. 

4 



- Local Relations are connecting two components and influence them upon 
receiving an update event. Two basic binary relation types are 
implemented up to now: springs and magnets. Spring relations connect two 
particles or rigid bodies and apply a force to both of them, directly 
proportional to the extension or compression from the idle length. 
Magnetic relations do the same, but the applied forces are inversely 
proportional to the square of the components’ distance.  

- Global relations are connecting only one component with a global 
property, for instance the gravity or a viscous drag that slows down fast 
moving particles. 

- Groups are themselves components and can be used to organize 
components hierarchically. Members can be added to and removed from 
groups at runtime, enabling dynamically growing structures. If a group is 
part of a relation it can apply the relation to all its group members, thus 
making it easier to define complex relations. For example the viscous drag 
can be applied to a particle group and influences all the group members. 

 
A small but efficient physics engine, which simulates the behaviour of particles and 
rigid bodies very much like the game engines used in arcade games to show realistic 
physical behaviour of 3D objects, is used to evaluate the model trees built from those 
components. A parameter binding mechanism based on the design patterns for Java 
Beans allows to define dependencies between properties of different components, so 
that for example all the members are notified of specific property changes in their 
parent group. By using the inheritance feature of the Java programming language, 
powerful specialized classes can be programmed at ease. 

Interaction: The Graphical User Interface 

The graphical user interface (GUI) gives direct access to the properties of the model 
and shows the results of the simulation in real time. Every component is displayed in 
the model tree (Fig. 4, top left) and its properties can be managed with a property 
editor (top right).  

 
Fig. 4: Screenshot of the ZORA application QUADMESHER 
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By consequently applying the design patterns for Java Beans, it was possible to create 
generic interfaces for all components. Thus, a standard property editor is always 
available even for derived components, which speeds up the development of complex 
models enormously. 

Display: 3D real-time rendering 

Since the aim is to generate three-dimensional structures, it would hardly be possible 
to judge the results without a 3D view of the model. The Java 3D API is used to 
render the components in real time. The 3D model has the same hierarchical structure 
as the simulation model but is completely separated. Every component of the 
simulation model is represented by a renderer-object in the 3D model, which takes 
care of displaying its component. Communication between model and representation 
is again based on the Java event model, so that different views on the simulation 
model can be generated by adding different renderers (or even no renderer at all to 
speed up simulation in a non interactive mode). Since the Java 3D API is rather 
complex to program, a default renderer for every basic component class is provided 
(e.g. a cube renderer for particles, a line renderer for springs etc.), so that a simple 3D 
view of the simulation model can be developed without difficulty. The default 
renderer classes implement basic interactions like picking and dragging components. 

Persistence: XML Import and Export 

To save the current state of a simulation model, the model tree can be exported to an 
XML file containing all properties of all components. In reverse, the XML file can be 
imported to restore the model and continue the simulation. Generic methods for 
reading and writing of XML data are implemented in the basic component classes – 
similar to the generic property editors – so that derived components can inherit the 
functionality and liberate the programmer from developing import-/export-routines.   
The universality of XML is especially beneficial for further processing the results in 
other programs capable of reading XML. In the following example, an XSL 
transformation is used to strip the output of the ZORA simulation from unnecessary 
information and convert it to a format that can be imported by a CAD program, which 
then converts it into the control code for a CNC mill – a continuous process from 
generation and optimization to production and the first application of the ZORA 
libraries. 

SQUARING THE SPHERE: QUADMESHER 

To show the potential of the “digital chain”, a continuously digital process from 
Computer Aided Design (CAD) to Computer Aided Manufacturing (CAM), the chair 
for CAAD developed a small pavilion for a trade fair in Basel. The pavilion has the 
form of a sphere with two metres radius and reaches a height of three metres. It is 
assembled from quadrilateral wooden frames, very much like a coffered dome. Every 
frame consists of four wooden boards standing perpendicular on the surface of the 
sphere. But while in a traditional coffered dome openings have to be aligned with the 
regular structure, here the structure was required to react on the deliberately 
asymmetric placement of the windows, deforming the quadrilateral mesh that defines 
the geometry of the frames. 
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Fig. 5: Renderings of the pavilion’s design and structure 

To generate a quad-mesh is a well known task for everyone familiar with finite 
element systems, and there are a number of algorithms and programs for this problem. 
However, in this case there are some special boundary conditions: The mesh has to 
adjust to one large and four smaller openings so that the edges of the mesh are aligned 
with the edges of the openings. Also, the lower edges of the base frames have to align 
with the floor plane. The final structure can then be built by simply leaving away the 
frames below the floor level and inside the openings. The agent based simulation for 
this adaptive quad mesh is the first application based on the ZORA toolbox. 

A growing mesh 

To simulate an adapting mesh, again an agent based system on the base of particle 
dynamics was created. It consists of the following elements, derived from the basic 
component classes (see Fig. 6): 

- The centre of the sphere is defined by its coordinates. 
- Nodes are the basic components of the mesh. Each node is a particle that is 

connected to the centre of the sphere with a spring-relation that defines the 
sphere’s radius. All the nodes of the model are collected in a node group. 

-  Edges are spring relations connecting two nodes. The idle length of the 
spring is set to the optimal length of the edge, so all edges try to achieve 
the same length. All the edges of the model are collected in an edge group. 

- Meshes are group components containing a list of the four edges, two 
diagonals and a diagonal connection. All the meshes of the model are 
collected in a mesh group. 

- Diagonals are spring relations connecting two opposite nodes of a mesh. 
Every mesh group contains two diagonals that try to make the mesh 
rectangular by adjusting their idle length according to the lengths of the 
mesh’s edges. 

- Diagonal connections are spring relations connecting the centre points of 
a mesh’s diagonals. The diagonal connection assures that the mesh stays 
convex and as planar as possible. 

 

       
Fig. 6a, b: The mesh and its components 
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The resulting mesh is flexible to a certain degree, allowing it to adapt not only to 
changes in the sphere’s diameter but also to external forces applied to it. This is used 
to align the nodes and edges to the floor and the openings by introducing “magnetic” 
planes. The floor is a horizontal plane cutting through the sphere one metre below its 
centre. Each opening defines a four-sided pyramid from its corners to the centre of the 
sphere. By attracting the nodes while at the same time repelling the centres of the 
meshes, the planes align the edges in their vicinity (Fig. 7). 

 
Fig. 7: Mesh aligning with floor and openings 

While adjusting to the radius of the sphere and the openings, the topology of the mesh 
can be altered by the following three transformations, which define a Shape Grammar 
(Stiny and Gips 1972) that assures that only quadrilateral meshes are created. They are 
triggered by internal checks the meshes perform in every update cycle: 

- Splitting a node: If the pulling forces that are applied to a node by its 
adjacent edges are exceeding a certain threshold, the node may split and 
create a new node and a new mesh for every adjacent mesh (Fig. 8a). 

- Joining two nodes: If a mesh is deformed beyond a certain threshold (e.g. 
the angles are too far from being rectangular or the edges differ in length) 
the mesh may collapse by joining two opposite nodes into one (Fig. 8b). 

- Deleting a node: If (by joining two nodes) two meshes are sharing three 
nodes, the middle node and its adjacent edges are removed and the two 
meshes are joined (Fig. 8c). 

 
Fig. 8a-c: Mesh transformations: splitting a node, joining two nodes and removing a node 

 

From simulation to the real world 

The generation starts with a rhombic dodecahedron, a regular polyhedron composed 
of 12 rhombic meshes (Fig. 9a). Since the edges of the starting configuration are too 
long, the nodes immediately begin to split and create new meshes until the strain on 
the surface is bearable (Fig. 9b). When the centre distance is slowly increased, more 
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meshes are added until the sphere reaches its target size (Fig. 9c). Switching on the 
“magnetic planes” of the openings and the floor plane aligns the meshes with the 
desired lines.  

 
Fig. 9a-c: Starting configuration and growing mesh 

The resulting mesh can be exported to an XML file, which is further processed by an 
XSL transformation to the import format of second software. This software, 
programmed in the scripting language of a CAD package, generates the volumes of 
the wooden boards based on the coordinates of the mesh. After checking the structure 
within the CAD program, another script automatically creates the CNC code to 
produce all the boards on a computerized five-axis mill.  

 
Fig. 10a, b: Inside and outside view of the finished pavilion 

CONCLUSIONS  

It has been shown that self-organization in agent based simulation can be used to 
organise and optimise complex spatial constructions in order to comply with 
requirements of form, function and structure. In other words, emergence can help 
architects and engineers to create exact and formal configurations from metaphorical 
or informal ideas. However, getting an agent based simulation to create the desired 
result is a process of trial and error, since there is not yet a coherent methodology of 
“designing for emergence”. Unfortunately this does not only mean to program 
customised simulation software for each project. It also must be possible to 
interactively examine different settings of the model, which requires real-time 
presentation of the results and a user interface – both difficult features to program. 
The presented toolbox is intended to facilitate the development of such simulation 
systems, thus speeding up the loop of design, implementation and testing. Based on 
the ZORA toolbox it is planned to closely examine various further applications of 
self-organising structures.  
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