
nds2004 : caad : arch : ethz : ch

3

Generation and optimization
of complex and irregular
construction/structure

on the example of NDS2004 final project

Agnieszka Sowa
nds2004 : caad : arch : ethz : ch

ETH ZÜRICH
Chair of CAAD

Prof. Ludger Hovestadt
HIL E 15.1

ETH Hönggerberg
8093 Zürich
Switzerland

www.caad.arch.ethz.ch

 Master Layout | Li-hsuen, Yeh
Text, Drawings | Agnieszka Sowa

 Zürich, October 2004

ACKNOWLEDGEMENTS

Ludger Hovestadt

Sibylla Spycher
Oliver Fritz
Markus Braach
Russell Loveridge
Christoph Schindler
Karsten Droste
Oskar Zieta
Odilo Schoch
Kai Strehlke

Philipp Schaerer

Bruno Dobler

Christian Dürr
If Ebnöther
Jörg Grabfelder
Anna Jach
Jae Hwan Jung
Alexandre Kapellos
Irene Logara
Michelangelo Ribaudo
Hanne Sommer
Agnieszka Sowa
Detlef Wingerath
Thomas Wirsing
Li-Hsuen(Alexsandra) Yeh

Professor of CAAD

From CAAD Chair

NDS Courses Coordinator

ETHZ Department of Architecture
Research / Postgraduate Studies

NDS2004

12

13

ABSTRACT ENGLISH

Generation and optimization of complex and irregular construction/structure
on the example of NDS2004 final project

During the postgraduate studies in CAAD at ETH the research is mainly focused on computer based
architectural design and its automatic production. Usually the way from an architectural idea to production
starts with creating of a digital model of the structure which is than transformed into data which can be
used by CNC machines. The final group work of NDS2004 students also follows this schema. This thesis is
centered on its first element – computer aided architectural design.

The aim of the research was to create a programming tool which generate linear construction grids for a
cubic form and then optimize them according to given parameters. The data produced during this process
is then visualized by digital models which can be evaluated by a designer as ready for production or can be
changed in a further design process. Eventually, this data is an input for scripting tools creating production
drawings for CNC machines.

The thesis contains information about the mathematical description of the structure, methods of its
generation, analysis and optimization. It deals also with problems connected with data exchange and
storage. The effect of the work is presented by visualizations of digital models as well as by using rapid
prototyping methods. Moreover, the most spectacular result of using tools presented in this thesis is the
NDS2004 exhibition structure.

14

15

ABSTRACT DEUTSCH

Generierung und Optimierung komplexer und irregulärer Konstruktionen/
Strukturen am Beispiel des Schlussprojektes des NDS2004

Während des CAAD Nachdiplomstudiums an der ETH konzentriert sich die Forschung hauptsächlich auf
computerunterstütztes Design und dessen automatische Produktion. In den meisten Fällen beginnt die
Umsetzung einer architektonischen Idee mit der Erstellung eines digitalen Modells der Struktur, der dann
in Daten umgewandelt wird, die von CNC-Maschinen gelesen werden können. Die Endgruppenarbeit der
Studenten des NDS2004 befolgt ebenfalls dieses Schema. Die vorliegende These behandelt in erster Linie
computerunterstütztes Architekturdesign.

Ziel der Forschung war die Erstellung eines Programmierwerkzeugs, welches lineare Konstruktionsraster für
kubische Formen generiert und diese anhand gegebener Parameter optimiert. Die Daten, die durch diesen
Prozess produziert wurden, können dann durch digitale Modelle visualisiert werden. Letztere werden von
einem Designer evaluiert und für die Produktion benutzt oder in einem weiteren Design-Prozess verändert.
Es ist möglich diese Daten als Input für Scripting-Werkzeuge zu benutzen, die Produktionszeichnungen für
CNC-Maschinen erstellen.

Die These enthält Informationen über die mathematische Beschreibung der Struktur, Methoden
derer Generierung, Analysen und Optimierungen. Ferner werden auch Probleme bezüglich des
Datenaustausches und der Speicherung behandelt. Das Ergebnis dieser Arbeit wird anhand von digitalen
Modellvisualisierungen wie auch durch die Benutzung von Rapid Prototyping Methoden vorgestellt. Der
NDS2004 Prototyp ist überdies das spektakulärste Ergebnis bei der Benutzung von Werkzeugen in dieser
These.

16

17

CONTENTS

1. BACKGROUND 021

1.1 The CAAD Chair at Swiss Federal Institute of Technology in
 Zurich
1.2 Postgraduate Studies in CAAD
1.3 NDS group work as a conclusion of postgraduates studies in
 CAAD

021
021

021

2. INTRODUCTION 023

2.1 contests of the thesis on the background of the NDS04
 groupwork
2.2 the structure of the thesis
1.3 role of CAAD technoligies

023
023
025

3. COMPUTER GENERATION AND OPTIMIZATION
 PROCESSES IN ARCHITECTURAL DESIGN 027

18

4. GENERATION 033

4.1 overview
4.2 structure of the generation script
 4.2.1 procedure of planes generation
 4.2.2 calculation and storage of data
4.3 visualisation

033
033
033
036
039

5. OPTIMIZATION 045

5.1 overview - the optimization of NDS structure
5.2 0ptimization methods
 5.2.1 genetic algorithms
 5.2.3 evolutionary algorithms
5.3 search for panels
5.4 experiments with optimization

045
045
045
049
051
052

6. WORK FOR NDS04 STRUCTURE 059

7. ADDITIONAL TOOLS 063

7.1 designer’s touch
7.2 panels

063
064

19

8. FURTHER WORK 065

8.1 generation
8.2 optimization and genetic algotithms
8.3 other forms - 3D vectors experiments

065
065
066

9. CONCLUSION 067

APPENDIX 1 - Maya and MEL 069

APPENDIX 2 - list of procedures 071

BIOGRAPHY 075

20

21

1. BACKGROUND

1.1 The CAAD Chair at the Swiss Federal Institute of Technology in Zurich
 Eidgenössische Technische Hochschule Zürich (ETH)

The CAAD Chair at the department of architecture, ETH Zürich, researches the using of
modern information technologies as a development of the concept of architecture. This
extended definition encompasses: design support by means of digital media, manufacturing &
construction with computer controlled machines and intelligent building services.
(from: http://wiki.arch.ethz.ch/twiki/bin/view/NDS/NdsIntroduction)

1.2 Postgraduate Studies in CAAD
NachDiplomStudium (NDS) in CAAD

The postgraduate studies in CAAD are open to Swiss and international graduates with
professional experience from the field of architecture and related disciplines. The main focus
of the curriculum is computer based architectural design (CAD) and its automatic production
(CAM).
(from: http://wiki.arch.ethz.ch/twiki/bin/view/NDS/NdsIntroduction)

1.3 NDS group work as a crowning of postgraduates studies in CAAD at ETHZ

Apart from the fact that the students are required to produce individual theses to complete
postgraduates studies at ETHZ, NDS CAAD students are expected to work as a group on one
common, large and complex project. Students of two previous NDS courses designed the so-
called pavilions, that is small scale architectural objects without a specified function. Moreover,
the structures were not only designed – they were also build in 1:1 scale, using CNC machines
and other equipment provided by the CAAD Chair.

22

After some discussion, NDS04 students also decided to follow this pattern – at least as far as
an architectural scale and production methods are concerned. This thesis presents a workflow
and effects of the research and programming in the first phase of the design and production
process; namly, the stage where the designer’s idea concerning the NDS04 structure is
translated into a language understandable to machines and optimized so that it can exist not
only on the computer screen, but also in the real world.

It is important to realize that the presented work is only an example – a particular instance – of
all possibilities which the designer is offered by computers. The main idea of the structure can
be extended and used also for bigger and more complex architectural forms. Furthermore new
features can be added and analyzed. So this work should also be regarded only as an instance of
endless variety of all possible solution. Nevertheless, it shows that thanks to using computers
an unknown level of complexity and truly integrated design and manufacturing is now more
achievable.

23

2.1 content of the thesis on the background of the NDS04
groupwork

The first idea regarding a NDS2004 CAAD group work object could
be described quite easily – its outside form is a cube, built by freely
rotated planes (on first sketches, they were rotated only around one
of the three 3D coordinate system axis). From the structure built by
planes an inside shape is subtracted. This work schema results in a
structure built by irregular frames.

During the programming phase described in this thesis the general
idea was being more and more specified and defined. In the final
project the planes are rotated freely in all directions. Because of the
time-limit (there were only two months between the beginning of
the programming and the manufacturing start) the outside and
inside shapes remained cubic, but the idea can be also applied to
other outside and inside forms.

2. INTRODUCTION

| 2.1 | the work of the
thesis’ author against a
background of the entire
production process.2.2 structure of the thesis

The goal of NDS students was not only to design the structure and visualize it on the
computer screen, but also – and it was a far bigger challenge – to build it using real
materials, machines etc. The work described in this thesis fully coveres two phases of “from
idea to a final product” process (fig, 2.1) – the generation of a wire frame model of an
object structure grid and its optimization with regard to diverse esthetic, manufacturing
and material features.

24

25

Other examples of computer generation and optimization usage in architectural design are
also presented as well as more specified mathematical and theoretical background of the
programming. Details of the NDS04 groupwork are also described, followed by a description
of used scripting language in Appendix 1, while the list of created scripts with their parameters
and functions can be found in Appendix 2.

2.3 role of CAAD technologies

The idea about the appearance of a form comes from usually the designer during the design
process , as a sketch or other form of visualization. In NDS project it is more a verbal “description”,
where is a place for computer generation and calculation. Consequently, the computer has a big
influence on the final form – its construction as a surface structure as well as its elevations.

The computational optimization is also crucial in this case, because the generated structure
is so complex and irregular that is seems to be impossible to analyze it without using of a
computer. Or, to put it differently, it is hardly possible to find a bulidable solution among all
generated propositions without complicated calculations. Also every, even the smallest, change
of any structure element entail such complex changes in the entire construction, that it has to
be recalculated and reanalyzed. Here the main reason of using a computer in this project can be
seen – the structure is simply so complex that it has to be tackled with by a machine.

| 2.2 | schema of the cube creation idea

26

| 3.1 | Multiplanar
surface
articulation:
through
the mutual
adaptation
of geometric
fitness criteria
and geometric
articulation the
morphogenetic
process yields an
ever-increasing
complexity of two
co-evolved surfaces
that nevertheless
remains coherent
with the logics
of the material
system and
manufacturing
with a laser cutter.

27

3. COMPUTER GENERATION
AND OPTIMIZATION PROCESSES
IN ARCHITECTURAL DESIGN

gen•er•a•tion n.

1. the formation of a line or geometric figure by the movement of a point or line.
2. the act or process of generating; origination, production, or procreation.

op•ti•mi•za•tion n.

The procedure or procedures used to make a system or design as effective or functional as
possible, especially the mathematical techniques involved.

The American Heritage® Dictionary of the English Language, Fourth Edition
Copyright © 2000 by Houghton Mifflin Company.

Optimization is a process of looking for a solution to a given problem. Its aim is to make structure
features as close to the optimum as possible. It does not result with the perfect and the “one
and only” solution, mostly because the problems in question are so complex that there is no
possibility to check and decide if it is the ideal solution or it is only an approximation. Moreover,
the effect of this process is always different, even with the same input data.

Usually it is difficult to consider in architectural design computer aided generation without
optimization and vice versa. Naturally when the aim of an architect is only to create a good
looking, pure virtual form – the computer generation could exist without optimization, but
structures generated by random need optimization to become buildable. Moreover, evolutionary
generating algorithms seem to consist also optimization tools.

28

| 3.2 | Beijing National Stadium – structure
after optimization

| 3.3 | Beijing National Stadium – structure
before optimization, visible non-straight
elements

The idea of optimization in architectural design is not new. Fabric architects were the first to
use computers to optimize form and design in architectural structures – pioneer research was
done by Frei Otto in the late 50’s. J. Gero and A.D Radford In a book “Design by Optimization
in Architecture and Building” were considering different possibilities of using optimization
tools already in 1988 – but more in relation to function planning and cost analyses. Examples
of structure optimization are not yet so numerous. The most spectacular is probably Beijing
National Stadium, Olympic Green, China by Herzog and deMeuron. Here the irregular structure
elements support each other and build a grid-like formation (fig. 3.2, 3.3).

29

The “Water Cube” (fig. 3.4, 3.5) was
an idea for a design competition
entry submitted by China State
Construction Engineering(CSCEC)
in collaboration with PWT
Architects and Arup Sidney. The
project is a world class swimming
centre in Beijing for the 2008
Olympic games. The structure was
inspired by cells and soap bubbles
and it is based on a common
natural process, the most natural
effective subdivision of 3D space.
This structure is highly repetitive
and buildable while appearing
very organic and random. The
optimization process meant in
this project that the sectional sizes
and node diameters were even
changing and non – repetitive.

There are also some examples in more theoretical using of evolutionary generation and
optimization. The Emergence and Design Group (Michael Weinstock, Achim Menges and
Michel Hansel) used evolutionary algorithms in research project on high-rise buildings as
surface structures (fig. 3.6, 3.7). The “seed” – the section of a steel tube was generated at the
beginning of the process, it finally resulted with a double-helix structure. the development of
the phenotype (the definition – see OPTIMIZATION) was driven by exposure of the geometry to
environmental forces. The surface of the structure was covered by panels which were active
locally and responding local stimuli, they were capable of modulating the passage of light, heat
and air through it in both directions.

| 3.4 | (above) Water Cube - external steel
 frame perspective
| 3.5 | (right) Arup realtime screenshot; from

30

| 3.6 | research project on high-rise
 buildings as surface structures -
 helix evolution

31

| 3.8 | |3.9 | digital model evolved by a digital
 morphogenetic process using Genr8.

| 3.7 | research project on high-rise
 buildings as surface structures
 skin panel

32

Contemporary architects can experiment with evolutionary generation algorithms also
using the software developments that operate on the intersection of architecture, artificial
intelligence, artificial life, engineering and material science. Here presented example was
created with Genre8, a combination of evolutionary computation and generative algorithm. It
is implemented as a plug-in for Alias Wavefront’s 3D modeler Maya. In experiment (fig. 3.8,
3.9) described in (O’Reilly , 2004) two interlocking surfaces evolved through geometric fitness
criteria.

33

4.1 overview

Fig. 4.1 describes definitions which were introduced in the
generation and optimization description. As it was mentioned
before, the outside form of the NDS2004 object is a cube.

The structure is built by planes, i.e. flat, thin, freely rotated
construction elements which are connected with each other
so that they form a stable structure. Joints are located where
planes intersect. The areas between planes are called panels.

4. GENERATION

| 4.1 | definition: plane, panel and
joint

4.2 structure of the generation script

Generally, the generating script consists of two main procedures. Firstly, the planes are generated
randomly – this part is the actual generating script. Secondly, the planes are visualized inside a
cube as they build a structure. Of course there are also other procedures used during the process
(see Appendix2).

4.2.1 procedure of planes generation

The generation procedure has only one parameter, i.e. the number of planes expected as a
result. The planes should satisfy the following conditions: they should be generated randomly
in space and be irregular – not parallel to the cube sides. They should also be located in space in
a manner that they intersect with the cube. In addition they should build a rigid structure – so
intersect with at least few others.

34

| 4.2 | the schema of generation algorithm

Because of the limitation that already occurres during the generation the planes should follow
some rules and fulfill some conditions, like:
 - planes are define firstly by 3 points which are randomly choose on edges of the
 cube (so that they intersect the cube for sure)
 - there should be no 3 points on the same side (fig. 4.2a)
 - there should be no 2 points on the same edge (fig. 4.2b)
 - the angle between generated plane and 3D coordinate system planes should not
 be close to 90 in any direction (fig. 4.2, see in the chapter OPTIMIZATION).

35

This particularset of rules was formulated after some experiments with different generation
patterns. One of these experiments started with an idea that perhaps it would be better if the
planes were building a more regular structure already during the generation process – with
perpendicular and vertical planes rotated only a little in relation to each other. The script based
on a rule that only first point of every plane is created totally at random. Next points coordinates
had restrictions – as it is shown on a fig. 4.3. Eventhough the idea seemed promising, the
visual effect of the experiment did not fulfill the expectation. The structure turned out to be
too regular. Secondly, the optimization of the grid using this generation pattern resulted in the
structure which had only parallel planes and looked like a regular, straight construction grid.

| 4.3 | schema for generation with restriction algorithm

36

4.2.2 calculation and storage of data

The data about the three points defining plane (as 9 values – x, y, z coordinates of the points) is
then already recalculated inside the generation procedure to describe a plane only by 4 values:
<<x, y, z>> of normal vector (perpendicular to this plane) and translation in space. Owing to this
recalculation the data which is necessary to describe a cube and redrawit again is minimized to
a list of four values for every plane (fig. 4.4).

While working with Maya it turned out that the variables used by scripts were not saved during
the file saving – so all the numeric data about the generated structure was lost every time,
just a 3D wireframe model was stored in .mb file. From the moment it was discovered, all the
scripts were structured so that they are able to restore all the information about its variables,
coordinates, coefficients etc. only from the list of four digits planes descriptions. Therefore there
is no need to store a Maya file with the cube model. Instead it is enough to save text/numeric
output in a plain text file.

Because the information about the structure is used by drawing construction procedures and
scripts, the data has to be stored in a way that it can be than reused. Particularly the data about
joints is crucial for production procedures. From the mathematical point of view joints in the
study object are intersection points between two planes and cube side. In other words, every

| 4.4 | the structure of the coeficients

37

plane has an intersection line with a cube side. If two of these lines (i.e. from two different
planes) intersect a joint comes into being.
The data about the joints is stored in arrays (lists of values), where values on the same position
refer to the same point. The arrays includes following information:
 - the number of the cube side where the point is located (because all calculations
 are executed on 2D planes of cube faces)
 - x ,y, z coordinates of the point
 - numbers of two intersecting lines which create this point (thanks this the
 information it can be recalculated which planes intersect to build this particular
 joint)

| 4.5 | structure of the data storage

38

Arrays are also used to store information about lines. Because the lines are always consider as
drawn on the cube’s sides (also on planes) - they can be described by a equation of a line on a
plane, not in space. Information about the lines includes:
 - A,B,C – coefficients from the a line equation Ax+By+C=0 (where x, y are
 coordinates of points on the line)
 - the number of the side where the line is located (the third coordinate of every
 point of this line)
 - the number of plane which creates the line

| 4.6 | examples of different structures
 with different numbers number

39

4.3 visualization

From the programming point of view there is no need to visualize data during and after the
generation process. But a visual analysis of 3D structure model can be useful for both the
programmer and for the designer. Firstly, the programmer can evaluate results of scripting and
check if there are no mistakes in algorithms’ principles. Secondly, the designer can assess an
esthetic result of generation and/or change some features manually if it is needed or desired.
These are the reasons why (even if no drawings are needed for the generation) already in this
phase of work the visualization scripts were created.

The 3D model of the generated construction grid is a linear, wire frame structure. It is drawn in
space with lines which connect intersection points of every plane and appropriate cube edges.

The intersection between a plane and a cube is a polygon with 3, 4, 5 or 6 edges (fig.4.7c). The
coordinates of polygon vertexes are known (as intersection points between the plane and the
cube face), but it has to be decided how these points are connected in space (fig. 4.7b).

| 4.7 | schema of the drawing
 algorithm

40

| 4.8 | example of rapid prototyping model

41

This problem is solved in a following way:
intersection points between the plane and
edges of the cube are checked for every
side one after the other, so every cube face
is analyzed separately(fig. 4.7d) but drawn
together in the 3D space (fig. 4.7c). The idea
of separate calculations for every side of the
cube is then continued in all scripts. Thanks to
this most of the calculation is done on a plane
– the cube side– not in space; this makes the
procedures easier and they can be executed
with the use of less variables.

Naturally this simplification works only for
a cube or regular cuboid. Other forms (such
as irregular form built by flat faces, cones,
spheres, cylinders or curvilinear forms “blobs”)
need scripting with 3D vector geometry
description and calculation. During the work
on the structure (by production drawing
preparation for NDS04, with Michelangelo
Ribaudo) some experiments with 3D vectors
are already done, so some knowledge about
how the work can be continued for more
complex forms is already gathered. More
considerations about the further work on the
generation can be found in chapter entitled
FURTHER WORK in the thesis.

| 4.9 | | 4.10 | (right) examples of the structure
 small models of different materials

| 4.11 | | 4.12 | (next pages) - examples of models
 produced by 3D printer

42

43

44

| 4.13 | example of rapid prototyping model

45

5. OPTIMIZATION

5.1 Overview – the optimization of NDS structure

The optimization process has to take place on the script-generated structure, because it is
created by a generation algorithm completely at random so it cannot be used instantly as a
supporting construction. Its members should be optimized so that the entire construction
fulfills conditions connected with materiality. Generally the variety of these condition could be
quite wide: the type and thickness of the construction material influence the structure as well
as features of materials used as panels. Machines used to produce structure elements also have
their limits which can change structure parameters. All this information should be gathered
and then used during the optimization as parameters.

5.2 Optimization methods

5.2.1 Genetic algorithms

gene n.
A hereditary unit consisting of a sequence of DNA that occupies a specific location on a
chromosome and determines a particular characteristic in an organism. Genes undergo
mutation when their DNA sequence changes.

The American Heritage® Dictionary of the English Language, Fourth Edition
Copyright © 2000 by Houghton Mifflin Company.
Published by Houghton Mifflin Company. All rights reserved.

The idea of optimization can be easily presened on an example of genetic algorithms (GA).
The algorithms mimic some methods and ideas similar to the ones from real world in digital
world. They were introduced into optimization problem solving area by Holland(1975) and
Goldberg(1989) and since then they still demonstrate their usefulness through numerous

46

applications and theoretical projects (e.g. in research on flooding paths model in metropolitan
area, Wen 2004).

The generic algorithms serve as visualisation and optimization tools. In visualization they “(…)
can be used to explore the space in which it is impossible for the designer to consider all potential
configuration in advance, and only if what results shock or at least surprises.”(DeLanda, 2002).
In optimization of a structure GA can be used when the structure itself is so complex that it
cannot be analyzed and optimized in any traditional way, even with the use of a computer.
“Traditional way, but with the use of machine” is used here to mean an analysis of every possible
combination. If the number of possible combinations is infinite and when the time needed for
calculation is also close to infinity, the use of GA is the best solution.

Let us try to imagine how GA can be used to optimize the wireframe of thecube structure.

The process of optimization by GA starts with creation of so called population. In our example
it is a group of individuals – instances, randomly generated cubes with the same or different
number of planes. The phenotype is simply their visualization the way the cubes look like. The
phenotype of every cube is described by a genotype. In this case genes are data about every plane
in a cube.

After creation, individuals’ features are verified to check whether they fit to given parameters.
The fitness function for every cube also is calculated. The value of fitness function informs how
close the individual cube is to the optimal solution – the optimal cube. The process resulting in
fitness function is based on analisis of good and bad qualities of the structure. Good features
can be that a plane in a cube has intersection points with other planes (if it doesn not have, it
cannot build a rigid structure). On the other hand, bad features are for example too big or too
small distance between planes’ joints.

After “good” cubes are chosen, the best of them can reproduce. A reproduction is exchanging
pieces of the genotype (this process is called the same as in genetics – crossing over). The new
sets of genes are then genotypes for new cubes – children, instances of the second generation.
Some of the parents can also be a part of a new population, also some old cubes with mutations
as well as newly generated ones. The whole analysis, reproduction and mutation are then
repeated on new population of cubes. (fig. 5.1)

| 5.1 | genetic algorithm on example of cube structure

47

48

At the end the optimized solution is an effect of a long cycle of this random process; every time
it can lead to different results, even with the same starting population.

With the population generation as a random process it seems that a designer has not so
big influence on the final result. But this impression is only partly true – by manipulation of
the fitness function and setting different rules for reproduction, the effect of the process of
evolution can be modified significantly.

| 5.2 | the difference between non-optimized (1)
 and optimized cube (2)

1. 2.

49

5.3.2 evolutionary algorithms

ev·o·lu·tion n.
1. a gradual process in which something changes into a different and usually more complex or
better form.
2. biology:
a. change in the genetic composition of a population during successive generations, as a result
of natural selection acting on the genetic variation among individuals, and resulting in the
development of new species.
b. the historical development of a related group of organisms; phylogeny.

The American Heritage® Dictionary of the English Language, Fourth Edition
Copyright © 2000 by Houghton Mifflin Company.
Published by Houghton Mifflin Company. All rights reserved.

Because of a short time-limit for the programming, finally for the optimization of the structure
a simplified version of evolutionary algorithm is used. Evolutionary algorithms are tools that
also mimic the natural biological evolution to produce better and better approximation for
a solution of a problem, but they are more focused on an individual than a population. The
evolution in the natural world occurs mainly as a process of individuals’ adaptation to the
environment. The individuals which phenotype is better adjusted to the outside condition have
better condition for reproduction, so their genes survive. This pattern is also used in architecture
for form generation algorithms, where the environmental factors influence the appearance of an
individual. By structure optimization the appearance (the form) is given and only the structure
evaluate so that at the end of the process it is so close to optimal as possible.

During the fitness function calculation it is important to decide which features are the most
important for a good solution (they will influence the structure the most), which are less
important and which are only mentioned because of aesthetic point of view. These decisions
also influence the final effect of an evolutionary process.

In the example of a cube the main presumption is that every plane in a structure can be analyzed
only in environment of other planes, because only in coexistence with others it has bad or good
features. Here the fitness function is calculated not for the whole structure, but for every plane
separately.

| 5.3 | (next page) schema of the algorithm for panels searching

50

51

5.3 search for panels

From the construction point of view the most important data is how the intersection points
are connected to each other on cube sides, so how they build panels. The data related to
them is not produced by the generation/visualization script. The panels are searched during
the optimization. Again here all the calculations are done side by side. Even if for a human
it is obvious where the polygons are when he/she looks at a linear drawing, it is not so easy
for a computer. Lines have intersection points but not every intersection point is a vertex of
every polygon. In the analyzed case every point is a vertex of 4 polygons but the polygons have
different numbers of edges etc. (fig. 5.4).

| 5.4 | problems occurring during panels searching

Finding polygons is very important because it allows analyzing distances between intersection
points. Although the shortest distances could be easily found by checking “every point with
every point”, there is no way to analyze the longest distances between points it there is no
information if they form a panel.

The algorithm used to find panels bases on schema presented on the fig. 5.3. When a panel is cut
by a line, two new ones are created (or no new ones if the line doesn’t cross the panel). Analyzing
and calculating is done with arrays: one of them is a list of intersection points coordinates, and
others are lists of these point numbers, which form a panel. The idea is that if we have all vertexes
of the base polygon and we know how they are connected to each other (in the example we
start with cube’s face), we can find two new ones quite easily – by analyzing the new vertexes
set by its order. The results of the “looking for panels” process are two lists: one with panels’
description (sets of their vertexes) and second – list of all the vertexes with coordinates.

52

7.6 experiments with optimization

The experiments with optimization were taking place during the last 3 weeks of programming
phase. They were not easy to carry on, mostly because of the poor MAYA calculation possibilities
or, in other words, problems with storing a lot of variables needed during panel calculation.
Already at the beginning it turned out that it could be a reason why it would be difficult to
produce purely calculated solution for the NDS04 structure, without any manual work. That
was also why some additional tools came into being – like the script to add planes to a structure
(see ADDITIONAL TOOLS).

The optimization process gave a big variety of possibilities to carry different experiments. Firstly,
different factors and features were analyzed during the optimization, and they had different
importance for fitness function calculation. A general idea was that the fitness value is a sum
of “minus points”. These points were given to the cube planes according to different factors and
qualities.

In the NDS04 structure the analyzed factors were (fig. 5.5):

the distance between joints: it shouldn’t be too small (difficulties in production) as well as too
big (the strength of the material could be too small and deformation could appear); the values
for the calculation were: minimum distance = 20cm, maximum distance 120cm. Naturally, the
change of these values would lead to different optimization results. The planes were given the
“minus points” in following way: the panel edge connected two joints – intersection points.
These two points were created by 3 planes – one is common for both. If the edge is too short
or too long – all three planes which produced the edge’s ends were given “minus points”, for
example -20 for each, but the common one – twice (because this calculation was carried on for
every point separately).

In the fig.5.3 only the general idea is presented. The most important difference between this
simplified schema and existing script is that there is not a separate list of panels vertexes which
is created during panels searching. Already by generation the list of intersection points is done
and this list is used by looking for panels procedure. When a vertex of a panel is found, it is also
found on a list of intersection points. Number of a point on this second list is used in panel
description. Thus there is less data to store in computer memory.

53

the number of intersection points between
planes: at the beginning of the work this feature
was not analyzed, what followed to a situation
that the optimized cube has only planes almost
parallel to each other (because it was better
not to build any panels and “risk” that a panel
will have too long or too short edges). The final
settings for this factor were that if the plane
has less than 10intersection points (at least 3
are always present, because as “intersection
points” also the intersections between planes
and cube edges were considered), the fitness
value were decreased by 100; if the number
of them is between 10 and 25, -20 is given to
a plane.

distance between the cube edges and joints:
the distance between the edge of the cube
and the joint is also created by the so-called
“wall width”, i.e. the distance between the
outside cube form and inside subtracted one.
In reality, no frame has a thickness like the “wall
width”, because every one of them is rotated
in space. Hence, during the optimization this
virtual “wall width” was important as the one
which build “inside edges” of the cube, from
where distances were measured. The distance
between cube edges and joints were set as not
smaller than 40cm.

| 5.5 | the features analyzed during the optimization

54

The optimization as a process should be considered as a repetition of the analyses and structure
changes which should be continued so long that at the end every fitness value of the set is 0.
With Maya and MEL this condition should be taken only theoretically – because usually there
were no possibility to carry on such a large number of repetition that the fitness function
were even close to 0, because of the calculation interruption caused by memory lack. Yet the
gradual decreasing of the fitness values was visible. The problem was also that there were no
information exchange between the plane which was deleted from a structure and the new one
which does not learn from the previous one. This caused the situation that the newly generated
plane was also the worse in the next analysis and was deleted again.

Because there was no possibility to repeat optimization so long that it will be finished by
itself (when the fitness values for every plane would be 0), there could be always the situation
that exactly before the process was interrupted, a totally not proper plane was to be add to a
structure. On the table 1 and 2 one of author’s approaches to optimization is presented. It is also
visible that it is not always like that the next cube is better than the previous one – optimization
is not a linear process. It is highly possible that better combinations of the cube planes already
appeared during the process, but they were changed by next generated planes.

| 5.6 | (left) general schema of
 optimization process

table.1 (next page) the example of an
optimization process - fitness and text
data for every cube

table 2. (pages 56, 57) the example
of an optimization process with the
starting cube the same as in table 1.
example

55

randomly generated structure
with 14 planes

fintessPlane
-585
-712
-655
-517
-481
-589
-506
-633
-619
-627
-789
-537
-455
-615

$Aplane = {-0.6852115463,-0.7426512167,0.4971806603,-0.7844700
563,0.6078703267,0.3035522522,0.5411090797,0.7513749198,0.3776
949831,-0.8542221339,0.1253389532,0.8935463422,-0.7316335487,0.
5166281294}
$Bplane = {-0.85547919,-0.5257354989,-0.2396018465,0.3761611
482,-0.6142055264,0.5274820043,-0.6609640487,0.333143232,-
0.2885789413,-0.07795086631,-0.5403049125,-0.8925908984,0.0661
7009698,0.4894187047};
$Cplane = {0.1140953176,-1,-0.6582924576,0.56206228,-0.97045
20426,0.3035417907,0.4628582146,0.4264845831,0.2957041816,-
0.9099377541,-0.5144283928,-0.5077448487,0.64859504,-1};
$Dplane = {0.590257952,1.343744045,-0.1698903816,0.3435490279,
0.5576517578,-0.6709109629,-0.2504567825,-0.8574096835,-0.2731
342375,0.9169581842,0.4725836603,0.1270492236,-0.05269316084,-
0.3666677878}

structure after next 2100 repetition
of optimization script

fintessPlane
-333
-518
-324
-361
-400
-570
-473
-192
-415
-403
-414
-421
-560
-531
-227

$Aplane = {-0.6861576864,-0.8967815676,-0.8159411043,0.130351482
8,-0.06723860033,0.3505639473,0.2962542798,0.7513749198,0.37769
49831,0.110385696,0.06417568244,0.8001291268,-0.7316335487,0.394
3025245,-0.1683425576};
print$Bplane = {-0.2348370697,-0.2310051497,0.2255431864,0.11870
75187,-0.333748583,0.4734546185,0.9238132462,0.333143232,-0.2885
789413,0.3373776439,0.1887016771,0.1081284548,0.06617009698,-
0.8029128584,0.1705221879};
$Cplane = {-0.5787754168,0.5612787313,-1,-0.6881717248,0.8293387158
,-1,0.07133735348,0.4264845831,0.2957041816,0.2486815412,0.9153831
063,-0.5363352463,0.6485950437,-0.5043305723,-0.1753707825};
$Dplane = {0.397131201,0.1730708389,0.9104710663,-0.14586712
41,0.05356957612,0.4764696504,-0.3031986495,-0.8574096835,-
0.2731342375,-0.6002091555,-0.9955261385,-0.3709916745,-0.052693
16084,0.4401986892,0.02952236604}

structure after next 3000 repetition
of optimization script

fintessPlane
-289
-375
-425
-407
-381
-265
-531
-632
-485
-398
-433
-395
-356
-482
-414

$Aplane = {-0.6840459908,-0.9169479293,-0.09319688926,-
0.1826128985,-0.5487596555,-0.08220094687,0.2962542798,0.10249
27641,0.3776949831,0.06417568244,-0.03658594423,-0.1683425576,0
.3165069806,-0.9538141297,0.615628249};
$Bplane = {0.5337042875,-0.8163656739,-0.8516940395,-1,-
0.0004223066636,-0.1073388793,0.9238132462,-0.07631474529,-0.2
885789413,0.1887016771,-0.1463959257,0.1705221879,-1,0.143320981,-
0.67433088};
$Cplane = {-0.5378307192,-0.5864130723,0.08146179449,-0.4671026
336,0.2895879878,-1,0.07133735348,0.1664231234,0.2957041816,0.91
53831063,0.3599932206,-0.1753707825,-0.1950670765,-0.167766814
7,0.3012193158};
$Dplane = {0.3189677126,1.334977887,0.8234974581,0.9392271677,0.38
9845451,0.9007125179,-0.3031986495,-0.05191477092,-0.2731342375,-
0.9955261385,0.01122602639,0.02952236604,0.08326195688,0.9305
417502,-0.5017104259};

56

randomly generated
structure with 14 planes

fintessPlane=
-585
-712
-655
-517
-481
-589
-506
-633
-619
-627
-789
-537
-455
-615

$Aplane = {-0.6852115463,-0.7426512167,0.4971806603,-0.7844700
563,0.6078703267,0.3035522522,0.5411090797,0.7513749198,0.3776
949831,-0.8542221339,0.1253389532,0.8935463422,-0.7316335487,0.
5166281294}
$Bplane = {-0.85547919,-0.5257354989,-0.2396018465,0.3761611
482,-0.6142055264,0.5274820043,-0.6609640487,0.333143232,-
0.2885789413,-0.07795086631,-0.5403049125,-0.8925908984,0.066
17009698,0.4894187047};
$Cplane = {0.1140953176,-1,-0.6582924576,0.56206228,-0.97045
20426,0.3035417907,0.4628582146,0.4264845831,0.2957041816,-
0.9099377541,-0.5144283928,-0.5077448487,0.64859504,-1};
$Dplane = {0.590257952,1.343744045,-0.1698903816,0.3435490279,
0.5576517578,-0.6709109629,-0.2504567825,-0.8574096835,-0.2731
342375,0.9169581842,0.4725836603,0.1270492236,-0.05269316084,-
0.3666677878}

structure after 300 repetition of
optimization script

fintessPlane=
-391
-364
-188
-346
-413
-276
-365
-499
-372
-177
-303
-361
-376
-323

$Aplane = {-0.6861576864,0.3505639473,-0.3514701599,0.16195380
91,0.6078703267,0.3035522522,0.2962542798,0.4138325003,0.3776
949831,0.06417568244,0.1024927641,0.8935463422,-0.7316335487,-
0.5487596555};
$Bplane = {-0.2348370697,0.4734546185,0.6297872424,0.7529827
407,-0.6142055264,0.5274820043,0.9238132462,-0.4049047607,-
0.2885789413,0.1887016771,-0.07631474529,-0.8925908984,0.06617
009698,-0.0004223066636};
$Cplane = {-0.5787754168,-1,0.4192413675,0.845269367,-0.97045204
26,0.3035417907,0.07133735348,-0.2336354248,0.2957041816,0.91538
31063,0.1664231234,-0.5077448487,0.6485950437,0.2895879878};
$Dplane = {0.397131201,0.4764696504,0.04683977208,-0.8703285
824,0.5576517578,-0.6709109629,-0.3031986495,0.08726453298,-
0.2731342375,-0.9955261385,-0.05191477092,0.1270492236,-0.05269
316084,0.389845451}

structure after 600 repetition of
optimization script

fintessPlane=
-370
-285
-190
-436
-383
-290
-310
-558
-462
-347
-274
-478
-362
-224

$Aplane = {-0.4798258258,0.3505639473,-0.3514701599,0.16195380
91,0.6078703267,0.3035522522,0.5151925663,-0.05458522902,0.377
6949831,0.9015372746,0.1024927641,-0.6161822505,-0.7316335487,-
0.5487596555};
$Bplane = {-0.8158845759,0.4734546185,0.6297872424,0.7529827
407,-0.6142055264,0.5274820043,-0.309003091,-0.8468868293,-
0.2885789413,-0.6997724918,-0.07631474529,0.3739638344,0.06617
009698,-0.0004223066636};
$Cplane = {0.190850323,-1,0.4192413675,0.845269367,-0.970452042
6,0.3035417907,-1,-1,0.2957041816,-0.3754748303,0.1664231234,0.841
7530001,0.6485950437,0.2895879878};
$Dplane = {0.2006321673,0.4764696504,0.04683977208,-0.87032
85824,0.5576517578,-0.6709109629,0.6503382267,0.8596720738,-
0.2731342375,0.06890150668,-0.05191477092,-0.2847494045,-
0.05269316084,0.389845451}

57

structure after next 900
repetition of optimization script

fintessPlane=-
377
-272
-322
-359
-304
-371
-356
-326
-277
-368
-306
-331
-352
-171

$Aplane = {-0.8159411043,-0.5949862424,-0.3514701599,-0.1285593
732,0.6078703267,-0.3006255828,0.5151925663,0.8001291268,0.078
92000495,0.9015372746,0.1024927641,0.674950266,-0.7316335487,-
0.5487596555};
$Bplane = {0.2255431864,-1,0.6297872424,-0.3498810007,-
0.6142055264,-0.5119318716,-0.309003091,0.1081284548,-
0.07291287829,-0.6997724918,-0.07631474529,0.76280552,0.066170
09698,-0.0004223066636};
$Cplane = {-1,-0.3724308659,0.4192413675,-0.2724308774,-
0.9704520426,-0.542433487,-1,-0.5363352463,-0.111364774,-0.375474
8303,0.1664231234,-0.593365255,0.6485950437,0.2895879878};
$Dplane = {0.9104710663,1.221026766,0.04683977208,0.223877761
2,0.5576517578,0.578314573,0.6503382267,-0.3709916745,0.0951356
767,0.06890150668,-0.05191477092,-0.5342073028,-0.0526931608
4,0.389845451}

structure after next 1200
repetition of optimization script

fintessPlane=-
367
-319
-360
-382
-395
-369
-393
-392
-396
-264
-275
-446
-233
-311

$Aplane = {-0.8159411043,0.615628249,0.1652141596,0.829298455
,0.6078703267,-0.3006255828,0.9094261355,0.8001291268,0.670
6505671,0.5852755685,0.1024927641,0.5336387027,-0.7316335487,-
0.5487596555}
$Bplane = {0.2255431864,-0.67433088,-0.2534244894,-
0.8480783148,-0.6142055264,-0.5119318716,-0.606176044,0.10812
84548,0.055761581,-0.7924900866,-0.07631474529,0.8949704495
,0.06617009698,-0.0004223066636};$Cplane = {-1,0.3012193158,-
0.6329559244,0.8384846621,-0.9704520426,-0.542433487,0.77142
81778,-0.5363352463,-0.2798229614,-0.9522314486,0.1664231234,-
0.8631508242,0.6485950437,0.2895879878};
$Dplane = {0.9104710663,-0.5017104259,0.5607597222,-0.12598
84188,0.5576517578,0.578314573,-0.7015569465,-0.3709916745,-
0.4829871394,0.427691448,0.05191477092,-0.1619903414,-0.052631
6084,0.389845451}

structure after 3000 repetition
of optimization script

fintessPlane=-
368
-475
-423
-452
-308
-424
-506
-389
-207
-358
-464
-211
-308
-265

$Aplane = {-0.8159411043,0.3165069806,0.7709898623,0.27601
54585,0.6078703267,0.07255871173,-0.396561329,0.1857705451,-
0.9244773472,-0.09319688926,0.1024927641,-0.04166725558,-
0.7316335487,-0.5487596555};
$Bplane = {0.2255431864,-1,0.5921964307,0.02056636417,-
0.6142055264,-0.3915411887,-0.3674600869,0.4975711007,-
0.3495015359,-0.8516940395,-0.07631474529,-0.07520340767,0.066
17009698,-0.0004223066636};
$Cplane = {-1,-0.1950670765,0.7551600609,-0.3156861987,-0.970452
0426,0.4424282895,-1,-0.485234844,0.8858919962,0.08146179449,0
.1664231234,0.310950727,0.6485950437,0.2895879878};
$Dplane = {0.9104710663,0.08326195688,-0.9439291718,0.2079855
636,0.5576517578,0.1457535786,0.960069169,-0.0924340546,0.166
0461502,0.8234974581,-0.05191477092,0.08565575975,-0.05269316
084,0.389845451};

58

59

6. WORK FOR NDS04 STRUCTURE

All theoretical considerations and programming work described in this thesis had one main aim
– to produce a buildable, wireframe structure for the NDS pavilion. This linear representation
should be than used as a skeleton with real materials and it should be firstly visualized in the 3D
space on the computer screen and then manufactured.

This kind of work seemed to be a real challenge – both in means of time-limit as also a
responsibility and cooperation with other group members:
 Michelangelo Ribaudo – who was responsible for production drawings;
 If Ebnöther and Jörg Grabfelder – who worked on joints details and manufacturing
 process,
 Anna Jach and Hanne Sommer – whose job was to design the cover structure;
 and all other NDS students who also has an influence on the final project.

| 6.1 | three cubes - proposals for further work

60

The whole design was evaluating all the time during programming phase. These changes
and suggestions also influenced GA fitness function or rules for generation algorithm, etc.
so the cooperation was a crucial element of work.

Finally, three optimized structures were presenters to the group and some of assistants.
One of the proposals was then chosen for further work and production. Some slight
changes were needed because of group members’ suggestions and ideas. Moreover till the
last moment there was an idea of a big information panel incorporated to a structure. at
the end, during evaluating the first big cartoon model (fig. 6.2), this idea was abandoned
because the structure itself seemed to be spectacular enough, Finally, the 9-plane cube was
manufactured and exhibited as a result of NDS group research and work(fig. 6.3, 6.4).

arrays for three cubes from the fig. 6.1

cube1 $Aplane= { -1.072001, 0.6078703267, 0.8001291268, 0.1024927641, -0.5949862424, -0.3006255828, 3.099236 ,
0.137652, -0.7203, 1.338953, 1.012666, 2.242515 }; $Bplane= { 0.628609, -0.6142055264, 0.1081284548, -0.07631474529,
-1.0, -0.5119318716, -1.794062 , -0.113439, 0.975319, 1.204105, 0.021208, 3.493845 }; $Cplane= { -0.9061, -0.9704520426,
-0.5363352463, 0.1664231234, -0.3724308659, -0.542433487, 3.507812, 0.197528, 1.171913, -0.690224, -0.612726, -1.059611 };

| 6.2 | (left) cardboard model

| 6.3 | | 6.4 | (next pages) NDS04 1:1 structure

61

$Dplane= { 1.005457, 0.5576517578, -0.3709916745, -0.05191477092, 1.221026766, 0.578314573, -2.48242, -0.085041, -0.461696,
-1.17315, -0.193641, -1.66401 };

cube2 $Aplane= {-0.8464384105, -0.342384, -1.085698, 0.5461631397, -0.7931392819, -0.7075098671, 0.8867018132, 0.153747,
0.4651374461, 0.8292579081, 0.858724, 0.395076 }; $Bplane= { 0.5552307892, 1.054175, -0.896179, 0.4829963586, 0.4004663735,
0.8736476983, 0.4361461658, -0.950545, 0.3839430073, 0.8649583705, -1.140121, -0.981543}; $Cplane= { -0.8580282306,
0.939192, -0.914389, -0.2349151238, 0.4380900804, -0.9447640897, 0.236308113, -1.036641, 0.391744454, 0.7720183645,
-0.246476, 1.199279 }; $Dplane= { 0.4899769628, -0.851391, 1.370001, -0.5304495668, 0.0374235896, 0.6483634222, -1.075752611,
1.036054, -0.6155449899, -1.011561354, 0.243194, -0.22325 }

cube3 $Aplane= {0.49879, -2.339699, -0.8967815676, -0.7844700563, 0.6078703267, 0.7513749198, 0.3776949831, 0.8935463422,

62

-0.1683425576, 2.408037, -0.680783}; $Bplane= {0.417268, -2.097016, -0.2310051497, 0.3761611482, -0.6142055264, 0.333143232,
-0.2885789413, -0.8925908984, 0.1705221879, 2.685242, 0.585601}; $Cplane= {-0.138892, 1.087785, 0.5612787313, 0.56206228, -
0.9704520426, 0.4264845831, 0.2957041816, -0.5077448487, -0.1753707825, 1.002112, 0.580152}; $Dplane= {-0.439046, 2.468681,
0.1730708389, 0.3435490279, 0.5576517578, -0.8574096835, -0.2731342375, 0.1270492236, 0.02952236604, -2.018526, 0.299873};

official cube array
$Aplane= {-0.8464384105, 0.595807, 0.5461631397, -0.7931392819, -0.7075098671, 0.153747, 0.4651374461, 0.858724, 0.395076 };
$Bplane= { 0.5552307892, -0.097311, 0.4829963586, 0.4004663735, 0.8736476983, -0.950545, 0.3839430073, -1.140121, -0.981543};
$Cplane= { -0.8580282306, -1.14713, -0.2349151238, 0.4380900804, -0.9447640897, -1.036641, 0.391744454, -0.246476, 1.199279 };
$Dplane= { 0.48997696, 0.530634, -0.5304495668, 0.0374235896, 0.6483634222, 1.036054, -0.6155449899, 0.243194, -0.22325 };

63

7. ADDITIONAL TOOLS

7.1 designer’s touch

During the generation and optimization process the interaction between the script/computer
and the designer is possible. Not only has the designer set the parameters for these processes:
he/she can also make some changes “by hand” – just tune the structure that it satisfies his /her
esthetic expectation. Some tools were created to make this interaction easier. The first of them
is printCubeArray procedure. In Maya arrays are printed always as lists of values, without any
separators and brackets. But when we want to load values from array in Maya, we need the list
separated by comas and in {} brackets. PrintCubeArray is a small but useful tool to print arrays
that way that they can be immediately reused.

1
2
3
that is how Maya print values

$array = {1,2,3}

that is how the values then have to be loaded.

Next tool is a generatePlaneAndAdd procedure. After a cube is generated there is sometimes a
need to add new plane to the structure. Adding a new plane – it means adding new values to the
variable lists in Maya. GeneratePlaneAndAdd needs as parameters coordinates of three points
located on a plane the user wants to add to the structure. After recalculation the coefficients of
the new plane are added to the adequate variable lists.

Sometimes there is a need to take a look at fitness values of generated cube without optimizing
it (fitness calculation is included in optimization script and normally is not printed – just
analyzed and deleted from memory). The fitness procedure print fitness values for every plane.

64

7.2 Panels

The information about how intersection points (joints) are connected to each other – or in
other words- how panels are located on cube’s side is crucial for optimization process. But it
can be also useful for production – if the spaces between structural elements will be filled by
panels, the shapes of them are already calculated and they can be easily drawn. The output
of drawingPanels procedure execution is 3d model of the cube made of panels which can be
deformed or used as a basis for further work on production files.

| 7.1 | panels impressions

All .mel files needed form generation and optimization can be found on the CD ROM attached to this thesis.

65

8. FURTHER WORK

8.1 generation

While the programming work continued the new, interesting ideas and proposals for further
work appeared. They dealed with the generation algorithms as well as with optimization. At
the beginning of the work the biggest question was if to use MAYA features supported by MEL
(Maya Embedded Language) or to approach in pure mathematical way where MAYA is used only
for visualization and the output of the generating process are only points coordinates. Finally,
the second approach was chosen because it seemed to be easier transferable to any other
programming environment – and this migration was considered quite often (especially after it
turned out that MAYA does not support well more complex mathematical calculations).

But of course one of the possibilities for further research is a comeback to a starting point of
the NDS groupwork project idea and trying to work on the structure using MAYA features and
functions. That means not generating planes by points, but simply by creation and rotation
of NURBS planes, not looking for intersection points by calculation, but by MAYA intersection
function and so on. Here also the other methods of optimization could be then tested – like
springs (one of dynamic MAYA functions).

8.2 optimization and genetic algorithms

The optimization is a field which gives the biggest possibilities for further work. Firstly, because
it is more complicated and difficult part of the work – so it can simple be improved. Secondly,
the experiments with different fitness function settings, methods of reproduction, mutations,
generation of new planes in evolutionary process could lead to spectacular and unexpected
results. As well the whole implementation of genetic algorithms could be considered. Moreover,
also simply new rules could be introduced into already designed optimization algorithm – like
for example “opening optimization”. This could be a tool which optimize the structure that in a
chosen area there will be no joints (intersection points) so an opening will be created.

66

8.3 other forms - 3D vectors experiments

The fact that the outside and inside form of the NDS04 structure was a cube make some
simplification in the programming possible. This means that it was quite easy to carry on all
analyses in two dimensions – on planes form by cube’s sides. Of course this method would not
work for other forms – like blobs, toruses, cylinders – this method will not work.

There are two ideas for a further work. Firstly, 3D vectors and Bezier curves could be used as the
analyzed elements for optimization algorithms, so the calculation should be then done with
their mathematical description. Other possibility is to prepare an approximated structure built
by flat planes – for blob or cylindrical form. Then this structure can be analyzed similarly as it
was done for a cube and then grids can be projected on the irregular surface. More specified
analysis of the panels could also be introduced (as shape, area analysis).

67

9. CONCLUSIONS

On the whole, the main impression of the author, after this intensive two months of
programming, learning about genetic and evolutionary algorithms as well as MEL is that
the designed generation and optimization algorithms suggested only a great bunch of new
possibilities for further research. To put it briefly – the new horizons were opened up, showing
different ways to continue the work on generation (with other programming languages, other
MAYA tools, on other forms) and on optimization (new algorithms – especially genetic ones,
also new programming environments, experiments with fitness function). Also the chosen tool
– MEL – did not come up to the author’s expectation. Moreover, eventually it turned out that the
generation and optimization could be calculated without any visualization need; output data of
these processes – as a text file – can be easily load in any 3D modeling/visualization program.
This information is particularly important for planning of further experiments because of
Maya/MEL more complicated mathematical calculation are difficult to execute. But even after
all simplification and approximation caused by time limit and problems with MEL the work
described in this thesis resulted with a design for the structure which was then built by NDS04
students. And this should be considered as a main achievement.

| 8.1 | detal of a structure

68

69

Because it is very important that there were a good exchange of all data between generation/
optimization scripts and production drawing scripts, the analysis and choice of the proper
programming language was done by the author of this thesis together with Michelangelo
Ribaudo, who was responsible for automated drawing production.
All scripts needed for generation, optimization and production of the NDS2004 study object
were done in MEL (Maya Embedded Language). This scripting language allows a user to create
procedures and scripts for custom modeling, animation, dynamics, and rendering tasks as well
as customize Maya’s interface. In this particular case it was used for calculation and visualization
of a wireframe model of cube structure and than production of flat elements’ drawings which
were than used as a basis for milling and laser manufacturing drawings.

Initially as a scripting language for programming structure of NDS2004 we considered three
scripting languages of three different 3D modeling or drafting applications:
 VectorScript (for VectorWorks),
 advantages: simple, popular in architecture offices, we know basis, possibility of
 customizing the user interface of the application;
 disadvantages: no NURBS, slow 3D engine;
 MAXScript (for 3Dstudio MAX)
 advantages: 3D studioMAX is more popular than MAYA in architecture offices;
 possibility of customizing the user interface of the application ;
 disadvantages: we have not known it yet – and time we had for programming was
 short;
 MEL (Maya Embedded Language).
 advantages: we have known it already, so programming could be started at once;
 possibility of customizing the user interface of the application; fast 3D modeling;
 disadvantages: we did not know them yet;

APPENDIX 1
Maya and MEL

70

Now, when the scripting is finished, longer and more detailed list of MEL advantages and
disadvantages can be done:

advantages of using MEL:
 - no need to compile programs: scripting languages commends can be execute
 immediately in Maya
 - no need to exchange data: generation, optimization and production drawings can
 be calculated and prepared in one program
 - fast visual feedback – the results of calculation can be easily check by a
 programmer on the screen, which is important in 3D vector calculations
 - possible use of additional features of Maya – like springs – for next steps and
 experiments in optymization
 - NURBS surfaces allow fast and accurate visualization of complex forms.

disadvantages of using MEL:
 - Maya is not stable enough for executing long and complicated calculations, which
 were needed for optimization process
 - some functions which could be useful doesn’t exist in MEL (for example dynamic
 matrixes);

71

APPENDIX 2
list of procedures

GENERATION
name arguments do what

makeABCDwithCounter ABCD of a plane,
counter

gives the ABCD calculated for a plane
unique namesto do: connect this
procedure with calculateABCDofPlane

makePointOnEdge point number generated randomly a point of an edge
of a cube and gives it a unique name

makePointOnEdgesNEW - repeats three time makePointOnEdge
procedure, which results with the set of
points coordinates

angle_between_plane_
and_coordinate_system

ABCD of a plane check the angle between a plane
described by coefficients ABCD and
three planes of coordinate system

generatingPlanes number of planes results with 4 arrays of coefficients for a
given number of planes, the planes are
already analised (see: GENERATION)

CUBE VISUALISATION

calculateABCofLine (x1,y1) (x2,y2), number,
counter, side number
and width of the
wall coordinates of 2
points and a number
which is a counter for
the plane

calculates the ABC of equation of a line
Ax+By+C=0 created by 2 points and
gives them unique names

72

intPointABC ABC of two lines,
counters of two lines

calculate intersection point between
two lines and gives it unique name

drawCubeFromArray 4 arrays: lists of planes
coefficients A, B, C, D

generate a 1/1/1cube with intersection
lines on sides;

PANELS

makingTwoPanelsWithLine panel, ABC of line, nr
of panel, amount of
existing panels

calculate two new panels coordinates
arrays – these panels appear after
division the panel by line;

PanelDrawer1,….,
PanelDrawer6

- repeats the procedure
makingTwoPanelsWithLine as long as
all panels on a side are found

OPTIMIZATION

edgesOfPanelFitness1,…,
edgesOfPanelFitness6

panel arrayarrays for
intersection points
coordinatespanel
nrside nrminimal
distance to
checkmaximum
distance to check

checking if the edges of a given panels
are between minimum and maximum
proper value; if not, the procedure
changes already the fitness values for
planes which build the “bad” edges;

measureDistance coordinates of two
points

gives back the distance between two
points

closeToEdge the minimum
distance between the
joint and the edge
of cube, number of
analyzed intersection
point, side nr, the
width of the wall

checking if the intersection point (joint)
is in a proper distance of the cube
edge; if not, the procedure changes the
fitness function for planes which build
the “bad” points

calculateCubeFromArray 4 arrays: lists of planes
coefficients A, B, C,
Dwidth of the wall

recalculate all the values for a cube
– intersection points etc.; generally,
do the same as drawCubeFromArray
procedure, but without any drawing

73

optimization set of instructions, which result with
the decision which plane is to be
deleted because it is the worse one
and with generation of a new one; the
process repeated for example 100times
can be called optimization

fitness the same set of instructions as above,
but without deleting the worse plane;
results with a pront of fitness array
values in text editor

TOOLS

printCubeArray array print an array in script editor in such
a syntax that it can be then reload to
MAYA without any changes

generatePlaneAndAdd coordinates of three
points

add a new plane to an existing set

drawPanel1side, …,
drawPane61side

panel nr draw a polyline around the panel and
close it (so it can be than extrude etc.)

DRAW_PANELS set of instructions where the drawPanel
procedures are repeated so long that it
results with the drawing of all panels
for all sides

74

75

BIBLIOGRAPHY

Bull S., Downing S., (2004) Beijing water cube – the IT chellange, in The structural engineer, 2004

Kuo-Chung Wen, Wei-Lung Chen (2004) Application of Genetic Algorithms to Establish Flooding Evacuation Path Model in
Metropolitan Area, CAADRIA 2004 [Proceedings of the 9th International Conference on Computer Aided Architectural Design
Research in Asia / ISBN 89-7141-648-3] Seoul Korea 28-30 April 2004

Hamburg M., O’Reilly U. M. (2004) Evolutionary Computation and Artificial Life in Architecture: Exploring the Potential of
Generative and Genetic Algorithms as Operative Design Tools, in Emergence: Morphogenetic Design Strategies(Architectural
Design), editors: Micheal Hensel, Mike Weinstock, Achim Menges, 2004

Radford, A. D. and Gero, J. S. (1988) Design by Optimization in Architecture and Building, Van Nostrand Reinhold, New York, 1988

Frei Otto in conversation with the Emergence and Design Research Group (2004),in Emergence: Morphogenetic Design
Strategies(Architectural Design), editors: Micheal Hensel, Mike Weinstock, Achim Menges, 2004

Weinstock M. (2004) , Morphogenesis and the Mathematics of Emergence, in Emergence: Morphogenetic Design
Strategies(Architectural Design), editors: Micheal Hensel, Mike Weinstock, Achim Menges, 2004

DeLanda, M. (2002), Deleuze and the Use of the Genetic Algorithm in Architecture , in Contemporary Techniques in Architecture
(Architectural Design), editor: Ali Rahim, 2002

Weinstock M., Menges A., Hansel M. (2004), Fit Fabric: Versatility Thought Redundancy and Differentiation, in Emergence:
Morphogenetic Design Strategies(Architectural Design), editors: Micheal Hensel, Mike Weinstock, Achim Menges, 2004

www.arup.com

FIGURES:
© Agnieszka Sowa, exept:
| 3.1 | | 3.2 | | 3.3 | | 3.6 | | 3.7 | | 3.8 | from: Emergence: Morphogenetic Design Strategies(Architectural Design),
editors: Micheal Hensel, Mike Weinstock, Achim Menges, 2004
| 3.4 | | 3.5 | from: Bull S., Downing S., (2004) Beijing water cube – the IT chellange, in The structural engineer, 2004

photos of rapid prototyping models and nds2004 structure: thanks to NDS04

76

77

special thanks to

my beloved family

and

Michelangelo

for never-ending support

78

Agnieszka Sowa
qleczka@intelcom.pl

+48 602 49 02 51
GG: 2222986
AIM: QllaAgu

MSN: qleczka@msn.com

