
| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

What is ActionScript ?

• ActionScript is an ECMAScript-based programming language used
for controlling Macromedia Flash movies and applications.

• Since both ActionScript and JavaScript are based on the same EC-
MAScript syntax, fluency in one easily translates to the other.

• However, the client model is dramatically different:
 •while JavaScript deals with windows, documents and forms,
 •ActionScript deals with movie-clips, text fields and sounds.

• Flash 7 (MX 2004) introduced ActionScript 2.0, which adds strong
typing and object-oriented features such as explicit class declara-
tions, inheritance, interfaces, and encapsulation.

• ActionScript code is frequently written directly in the Flash au-
thoring environment, which offers useful reference and powerful
aids for syntax checking.

 • In this case, the source code is saved along with the rest of the
movie in a .fla file.

• It is also common for ActionScript code to be imported from exter-
nal text files via #include statements.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

Naming

• Naming involves capitalisation of code elements.

• Function names and variables should begin with a
lower-case letter;

• objects should be capitalized.

• The first letter of each subsequent word should also be
capitalised in both cases.

for example:

Components or objects: ProductInformation, MovieController

Variable or property: userName, myHtml, rawXml

The Flash code editor features code completion only when vari-
ables are named according to a specific format. This involves ap-
pending the variable type to the end of the variable name.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

• The Flash code editor features code completion only when variables are named according to a specific for-
mat. This involves appending the variable type to the end of the variable name.

• Supported suffixes for code completion (not completed)

Object type Suffix string Example

Array _array myArray_array
Button _btn myButton_btn
Color _color myColor_color
ContextMenu _cm myContextMenu_cm
ContextMenuItem _cmi myContextMenuItem_cmi
Date _date myDate_date
Error _err myError_err
LoadVars _lv myLoadVars_lv
LocalConnection _lc myLocalConnection_lc
MovieClip _mc myMovieClip_mc
MovieClipLoader _mcl myMovieClipLoader_mcl
SharedObject _so mySharedObject_so
Sound _sound mySound_sound
String _str myString_str
TextField _txt myTextField_txt
Video _video myVideo_video
XML _xml myXML_xml
XMLNode _xmlnode myXMLNode_xmlnode
XMLSocket _xmlsocket myXMLSocket_xmlsocket

Naming

code hints

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

Variables

• A variable’s scope refers to the area in which the variable is known and
can be referenced. There are three types of variable scopes in ActionScript:

 • Timeline variables are available to any script on that Timeline.

 • Local variables are available within the function body in which
they are declared (delineated by curly braces).

 • Global variables and functions are visible to every Timeline and
scope in your document.

• ActionScript 2.0 classes also support public, private, and static variable
scopes.

• Difference between the _global and _root scopes:
• The _root scope is unique for each loaded SWF file.
• Use the _global identifier to create global objects, classes, or vari-
ables.
• The global scope applies to all Timelines and scopes within SWF
files.

• Use relative addressing rather than references to _root timelines, be-
cause it makes code reusable and portable.

Scoping and declaring variables

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

Variables

• Timeline variables are available to any script on that Timeline.

• To declare Timeline variables, initialize them on any frame in
the Timeline.

• Be sure to initialize the variable before trying to access
it in a script. For example, if you put the code var x = 10;
on Frame 20, a script attached to any frame before Frame
20 cannot access that variable.

Timeline Variables

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

Variables

• To declare local variables, use the var statement inside the body of a func-
tion.

• A local variable is scoped to the block and expires at the end of the block.
• A local variable not declared within a block expires at the end of its script.

• Local variables can also help prevent name conflicts, which can cause er-
rors in your application.

• For example, if you use name as a local variable, you could use it
to store a user name in one context and a movie clip instance name
in another; because these variables would run in separate scopes,
there would be no conflict.

• It’s good practice to use local variables in the body of a function so that
the function can act as an independent piece of code. A local variable is
only changeable within its own block of code. If an expression in a func-
tion uses a global variable, something outside the function can change its
value, which would change the function.

Local Variables

function makeDays() {
 var i;
 for(i = 0; i < monthArray[month]; i++) {

 _root.Days.attachMovie(“DayDisplay”, i, i + 2000);

 _root.Days[i].num = i + 1;
 _root.Days[i]._x = column * _root.Days[i]._width;
 _root.Days[i]._y = row * _root.Days[i]._height;

 column = column + 1;

 if (column == 7) {

 column = 0;
 row = row + 1;
 }
 }
}

For example, the variables i and j are often used as
loop counters. In the following example, i is used as a
local variable; it exists only inside the function make-
Days():

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

Variables

• Global variables and functions are visible to every Timeline and
scope in your document.

• To create a variable with global scope, use the _global identifier be-
fore the variable name, and do not use the var = syntax.

• For example, the following code creates the global variable
myName:

var _global.myName = “George”; // syntax error
_global.myName = “George”;

• However, if you initialize a local variable with the same name as a
global variable, you don’t have access to the global variable while you
are in the scope of the local variable:

Global Variables

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

Variables

• Variables are used to store a variety of different types of
information

• A variable’s datatype relates to the information the vari-
able stores and assists Flash in determining which actions
are appropriate to invoke on this information.

• Strings, Numbers and Booleans are the most often
used variable data types.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

•

 founding_year = 2000;
 current_year = 2003;

 operational_for = current_year - founding_year;

 other example:

 my_sum = 1 + 2 + 3;

Numbers

Variables

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

•

•

 country = ‘Australia’;
 country = “Australia”;

 my_sum = “1 + 2 + 3”; NO Calculation!

Strings

Variables

link:

http://wiki.arch.ethz.ch/twiki/pub/Replay0405/FlashExamples/test1.swf

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

•

•

•

 likeFlash = true;

Boolean

Variables

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

•

 fav_color = "purple";
 fav_color = 1;

•

 myText = "purple";
 myNumber = 1;

 myResult = myText + myNumber;
 myResult = “purple1”;

Changing Variable Types

Variables

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

•

 var fav_color:String = “purple”;

•

 function doSomething(word:String):Number {
 }

 This defines a function which must take a String argument and
 must return a Number.

Strict Data Typing

Variables

link:

http://wiki.arch.ethz.ch/twiki/pub/Replay0405/FlashExamples/test2.swf

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

Commenting Code

• Commenting code is always recommended.

• Comments should document the decisions made while
building the code, telling the story of what it attempts to
do.

• A future developer should be able to pickup the logic of
the code with the assistance of the comments.

var clicks = 0; // This is a simple comment

/*
This is a multiline comment.
.....
.....
*/

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

Commenting Code

• Some common methods for indicating important comments are:

// :TODO: more work to be done here
// :BUG: [bugid] this is a known issue
// :KLUDGE: this bit isn’t very elegant
// :TRICKY: lots of interactions, think twice before modifying

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

Timeline layout

• Don’t use default layer names (Layer 1, Layer 2, etc.), provide
your own intuitive labels.

• Groups layers together in folders, where it makes sense.

• Place ActionScript layers at the top of the stack, to easily
locate all the code on the timeline.

• Lock layers currently not in use.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

•

•

•

Paths to Objects and Variables

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

•

•

Path to Objects

Paths to Objects and Variables

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

on (release) {
 setProperty (“clip2”, _visible, false);
 // OR
 clip2._visible = false;
}

Path to Objects

Paths to Objects and Variables

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

Path to Objects

Paths to Objects and Variables

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

Path to Objects

Paths to Objects and Variables

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

Path to Objects

Paths to Objects and Variables

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

3. The table below shows the path syntax parameters and gives examples of how to use them

Parameter Usage What it tells Flash

_level0 setProperty ("_level0" We’re going right back to the lowest Level of the movie.

_root setProperty (“_root” “We’re going right to the bottom of the current Level;
 to the Main Stage on which our base Objects are stored.”

. (dot) setProperty (“_root.clip1.clip2” “Whatever comes after this dot further defines the path to
 something.”
 In this case, clip2 is on the timeline of clip1 which is on the _root.

Path to Objects

Paths to Objects and Variables

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

 1. clip1 is on the main timeline.
 2. clip2 is within clip1.
 3. The Main Timeline can be reference using “_root”.

So, the path to clip2 is:

 _root.clip1.clip2

Path to Objects

Paths to Objects and Variables

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

• Variables are just a type of Object, so paths to variables
are specified in exactly the same manner as has been de-
scribed before.

• For instance, to set the value of a variable called ‘foo’ within
clip2 in the ongoing example:

So, the path to the Variable in clip2 is:

 _root.clip1.clip2.foo = “Some Value”;

Path to Variables

Paths to Objects and Variables

link:

http://wiki.arch.ethz.ch/twiki/pub/Replay0405/FlashExamples/object_paths.swf

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

• An instance is a copy of any symbol from your Flash file’s
library which resides on the stage. So any graphic, button
or movie clip you put on the stage is an instance.

• All instances have Instance Names, which by default are
“instance1”, “instance2”, etc.

• In MX we can address buttons using their instance names
and do all sorts of fancy stuff, so they’ve become even more
important!

Instances

link:

http://wiki.arch.ethz.ch/twiki/pub/Replay0405/FlashExamples/instances.swf

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

How to learn ActionScript?

• do webpages ands animations with Flash and ActionScript

• make mistakes

• make mistakes

• make mistakes

• make mistakes

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

Case Sensitivity

The Grammatik of ActionScript

• ActionScript is case sensitive. This means that you have to take care
about uppercase and lowercase characters.

 APFEL != apfel != Apfel

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

speaking Variables

The Grammatik of ActionScript

• use speaking Variables in your Scripts
 • it makes live more easy
 • it makes your Script more readable
 • you and your Colleagues will understand your script faster

 • e.g. rectLength, rectMovieClipXpos

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

The FOR Statement

Repetition Statements

• for ... to... do

 for(init; condition; next) {
 statement(s);
 }

init: An expression to evaluate before beginning the looping sequence; usually an assignment ex-
pression. A var statement is also permitted for this parameter.

condition: An expression that evaluates to true or false. The condition is evaluated before each loop
iteration; the loop exits when the condition evaluates to false.

next: An expression to evaluate after each loop iteration; usually an assignment expression using
the increment (++) or decrement (--) operators.

statement(s): An instruction or instructions to execute within the body of the loop.

 for (i=1; i<10; i++){
 trace(i);
 }

 output: 1 2 3 4 5 6 7 8 9

• see also: break;
 continue;

for (i=10; i>1; i--){
 trace(i);
}

output: 10 9 8 7 6 5 4 3 2

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

The DO ...WHILE Statement

Repetition Statements

• do ... while
 do {
 statement(s)
 } while (condition)

condition: The condition to evaluate.

statement(s): The statement(s) to execute as long as
the condition parameter evaluates to true.

 var myVar:Number = 0;
 do {
 trace(myVar);
 myVar++;
 } while (myVar<5);

 output: 0 1 2 3 4

• see also: break;
 continue;

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

The WHILE Statement

Repetition Statements

• while ...
 while(condition) {
 statement(s);
 }

condition: The condition to evaluate.

statement(s): The statement(s) to execute as long as
the condition parameter evaluates to true.

var i:Number = 0;
while (i<20) {
 trace(i);
 i += 3;
}

 output: 0 3 6 9 12 15 18

• see also: break;
 continue;

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

The FOR..IN Statement

Repetition Statements

• for..in

 for(variableIterant in object) {
 statement(s);
 }

variableIterant: The name of a variable to act as the iterant, refer-
encing each property of an object or element in an array.

 object: The name of an object to be iterated.

statement(s): The statement(s) to execute as long as the condition
parameter evaluates to true.

var myObject:Object = {name:”Tara”, age:27, city:”San Francisco”};
 for (var name in myObject) {
 trace(“myObject.”+name+” = “+myObject[name]);
}

//output
myObject.name = Tara
myObject.age = 27
myObject.city = San Francisco

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

The IF Statement

Conditional Statements

• if ... then ..
 if(condition) {
 statement(s);
 }

condition: The condition to evaluate.

statement(s): The statement(s) to execute as long as
the condition parameter evaluates to true.

if(name == “Erica”){
 play();
}

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

The IF Statement

Conditional Statements

• if ... then ... else
 if (condition){
 statement(s);
 } else {
 statement(s);
 }

condition: The condition to evaluate.

statement(s): The statement(s) to execute as long as
the condition parameter evaluates to true.

if (age>=18) {
 trace(“welcome, user”);
} else {
 trace(“sorry, junior”);
}

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | NDS : Introduction To Flash MX / ActionScript

The SWITCH Statement

Conditional Statements

• switch ()
 switch (expression){
 caseClause:
 [defaultClause:]
 }

expression: Any expression.

caseClause: A case keyword followed by an expression, a colon, and a group of statements to execute if the
expression matches the switch expression parameter using strict equality (===).

defaultClause: A default keyword followed by statements to execute if none of the case expressions match the
switch expression parameter strict equality (===).

 switch (String.fromCharCode(Key.getAscii())) {
 case “A” :
 trace(“you pressed A”);
 break;
 case “a” :
 trace(“you pressed a”);
 break;
 case “E” :
 case “e” :
 trace(“you pressed E or e”);
 break;
 default :
 trace(“you pressed some other key”);
 }

