
| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

What is VectorScript ?

• VectorScript is the scripting language component of the
VectorWorks software package.

• It is a lightweight programming language which syntacti-
cally resembles Pascal.

• VectorScript is actually a “superset” of the
Pascal language, extending basic Pascal capabilities with a
number of APIs (application programming interfaces) which
provide access to the features and funtionality of the Vector-
Works CAD engine.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Some Background On VectorScript

• VectorScript originated in 1988 as MiniPascal in the Mini-
CAD+ 1.0 release.

• With the advent of VectorWorks in 1998, MiniPascal became
VectorScript.

• The core VectorScript language continues to be developed
by Nemetschek North America.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

• VectorScript is a relatively general purpose programming
language, it provides the ability to perform most common pro-
gramming tasks. Tasks such as
 • computations
 • storing a value, and
 • manipulating data

• VectorScript also provides extended capabilities specifi c to the
VectorWorks product.

• Object Creation and Editing
 • create and edit objects directly

• primitive objects (lines, rectangles, ...)
 • more complex objects (multiple 3D extrudes, 3D solids

• Document Control

• Extended Data
• access to and control over - worksheets

 - data records
 - textures

What VectorScript Can Do

Some Background On VectorScript

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

What VectorScript Can’t Do

Some Background On VectorScript

• VectorScript does not have the ability to work across multiple docu-
ments or outside of a VectorWorks document context.

• For reasons of simplicity and stability, VectorScript does not have the
ability to manage or control memory allocation.

• VectorScript does not support system level calls for fi le-related or
other tasks.

• VectorScript does not provide external database or other connectivity
options.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

How does VectorScripts look?

PROCEDURE FirstExample;
CONST
 kGREETING = ‘Hello ‘;
VAR
 myMessage : STRING;

BEGIN
 myMessage:=’VectorScript’;

 Message(kGREETING,myMessage);
 Wait(5);
 SysBeep;
 ClrMessage;
END;
Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

How does VectorScripts look?

.. in the VectorWorks VectorScript Editor.

PROCEDURE FirstExample;
CONST
 kGREETING = ‘Hello ‘;
VAR
 myMessage : STRING;

BEGIN
 myMessage:=’VectorScript’;

 Message(kGREETING,myMessage);
 Wait(5);
 SysBeep;
 ClrMessage;
END;
Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

How does VectorScripts look?

.. in a texteditor with Syntaxhighlightning

PROCEDURE FirstExample;
CONST
 kGREETING = ‘Hello ‘;
VAR
 myMessage : STRING;

BEGIN
 myMessage:=’VectorScript’;

Message(kGREETING,myMessage);
Wait(5);
SysBeep;
ClrMessage;

END;
Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

How does VectorScripts look?

the different parts of a VectorScript

Identifi es the script to the VectorScript compiler
PROCEDURE FirstExample;

CONST
 kGREETING = ‘Hello ‘;
VAR
 myMessage : STRING;

BEGIN
 myMessage:=’VectorScript’;

 Message(kGREETING,myMessage);
 Wait(5);
 SysBeep;
 ClrMessage;
END;
Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

How does VectorScripts look?

the different parts of a VectorScript

Declares data storage for the script

The source code of the script

PROCEDURE FirstExample;

CONST
 kGREETING = ‘Hello ‘;
VAR
 myMessage : STRING;

BEGIN
 myMessage:=’VectorScript’;

 Message(kGREETING,myMessage);
 Wait(5);
 SysBeep;
 ClrMessage;
END;
Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

How does VectorScripts look?

the different parts of a VectorScript

Tells the VectorScript compiler to run the script

PROCEDURE FirstExample;

CONST
 kGREETING = ‘Hello ‘;
VAR
 myMessage : STRING;

BEGIN
 myMessage:=’VectorScript’;

 Message(kGREETING,myMessage);
 Wait(5);
 SysBeep;
 ClrMessage;
END;END;
Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Is VectorScript easy ?

yes!

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

..always ?

no.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Can I get sick of VectorScript ?

no.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

..really ?really ?really

ok, .. it depends.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

How to learn VectorScript?

• write programms with VectorScript

• make mistakes

• make mistakes

• make mistakes

• make mistakes

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Case Sensitivity

The Grammatik of VectorScript

• VectorScript is not case sensitive. This means that items
such as language keywords, variables, function names, and
any other identifi ers can be specifi ed using uppercase,
lowercase, or a mixed case and still be compatible with
other variations of the same item.

• APFEL = apfel = Apfel

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

speaking Variables

The Grammatik of VectorScript

• use speaking Variables in your Scripts
• it makes live more easy
• it makes your Script more readable
• you and your Colleagues will understand your script fa script fa script f ster

• e.g. rectLength, rectLeftCornerXpos

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

space

The Grammatik of VectorScript

• Since spaces, tabs, and new lines do not have meaning to the Vec-
torScript compiler, you are free to use them to indent and format your
script code. This type of formatting makes your scripts easy to read
and understand.

PROCEDURE FirstExample;
CONST
 kGREETING = ‘Hello’;
VAR
 myMessage : STRING;

BEGIN
 myMessage:=’VectorScript’;

 Message(kGREETING,myMessage);
 Wait(5);
 SysBeep;
 ClrMessage;
END;
Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

space

The Grammatik of VectorScript

PROCEDURE FirstExample;
CONST
kGREETING = ‘Hello’;
VAR
myMessage : STRING;
BEGIN
myMessage:=’VectorScript’;
Message(kGREETING,myMessage);
Wait(5);
SysBeep;
ClrMessage;
END;
Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

space

The Grammatik of VectorScript

PROCEDURE FirstExample;CONST kGREETING = ‘Hello’;VAR myMessage : STRING;BEGIN myMessage:=’VectorScript’;
Message(kGREETING,myMessage);Wait(5);SysBeep;ClrMessage;END;Run(FirstExample);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Comments

The Grammatik of VectorScript

• Comments in VectorScript are used to place descriptive text within
script code. They are most often used to document script code for your
reference and for others who may work on your scripts. The Vector
Script compiler ignores comments.

• The general syntax for a single VectorScript comment is:

{This is a comment}

• To comment out a block of the VectorScript code To comment out a block of the VectorScript code T the syntax is:

 (* my comment:
 write what ever you wanted,
 even VectorScriptcode or {other comments!}
 *)

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Identifi ers

• Identifi ers in VectorScript are symbols which are used to refer to something
else: constants, variables, data types, procedure or function names, and other
similar items. The rules for writing VectorScript identifi ers are :

 • The fi rst character must be a letter or an underscore.
 • Subsequent characters may be a character, digit, or underscore.
 • Identifi ers may not contain spaces, tabs, or other characters.

Value Identifi ers
 num color_32bit totalLumberUsed
 SUM _dummy A_very_fi ne_identifi er

Invalid Identifi ers
 52pickup three+two SUB TOTAL

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Reserved Words

ALLOCATE AND ARRAY BEGIN
BOOLEAN CASE CHAR CONST
DIV DO DOWNTO DYNARRAY
ELSE END FALSE FOR
FUNCTION GOTO HANDLE IF
INTEGER LABEL LONGINT MOD
NIL NOT OF OR
OTHERWISE PI PROCEDURE REAL
REPEAT STRING STRUCTURE THEN
TO TRUE TYPE UNTIL
USES VAR VECTOR WHILE

FILE FORWARD IMPLEMENTATION INHERITED
INTERFACE INTRINSIC OBJECT OVERRIDE
PACKED PROGRAM SET UNIT
USES WITH

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Variables

Variables, and Constants

• The VAR block in the VectorScript is the only location where variables
can be declared;

• The purpose of the VAR block is to defi ne storage requirements, not
to defi ne data.

• The general syntax for a variable declaration is:

 <identifi er>(,<identifi er>,...) : <data type>;

 jobName:STRING;
 i,j,k:INTEGER;

VAR
 myMessage : STRING;

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Constants

Variables, and Constants

• The CONST block in the VectorScript is the only location where con-
stants can be declared;

• Constants, unlike variables, do not require an explicit data type..

• The general syntax for a variable declaration is:

 <identifi er> = <value>;

 LOCAL_GREETING_FRENCH = ´Bonjour ´;

CONST
 kGREETING : ´Hello´;

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Fundamental Data Types

Data Types

• Numeric
• Text
• Other

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Numeric

Data Types

• INTEGER
-32767 to 32767

• LONGINT
-2.147.183.647 to 2.147.183.647

• REAL
1.9 x 10e-4951 to 1.1 x 10e4932

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Text

Data Types

• STRING
• up to 255 characters
• ASCII character

• CHAR
• a single ASCII character

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

..Other

Data Types

• BOOLEAN
• TRUE or FALSE

• HANDLE
• to store a reference to other VectorWorks data in memory.

• VECTOR
• A VectorScript VECTOR consists of three component REAL values

 which can also be treated as a single unit value.

• POINT
• to store the coordinates of a 2D point. It is a compound data type

 consisting of two component REAL values: x and y.

• POINT3D
• to store the coordinates of a point in 3D space. It is a compound

 data type consisting of three component REAL values: x, y and z.

• RGBColor
• The RGBCOLOR data type can store a color as three components:
red, green,and blue. Each component is a LONGINT value.

• NIL

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

The FOR Statement

Repetition Statements

• FOR ... TO... DO
PROCEDURE LOOP;

 VAR
 i : INTEGER;
 BEGIN
 FOR FOR i:=1 TO 5 DO rect(i,i,i*2,i*2);
 END;
 Run(LOOP);

• FOR ... DOWNTO... DO

 BEGIN
 FOR FOR i:=1 DOWNTO -5 DO rect(i,i,i*2,i*2);
 END;

• FOR ... TO... DO BEGIN

 BEGIN
 FOR FOR i:=1 TO 5 DO BEGIN
 rect(i,i,i*2,i*2);
 oval(i,i,i*2,i*2);
 SysBeep;
 END; END;
 END;

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

The WHILE Statement

Repetition Statements

• WHILE ... DO
PROCEDURE WhileLoop;

 VAR
 h : HANDLE;
 BEGIN
 h:= FActLayer; h:= FActLayer;
 WHILE (WHILE (h <> NIL) DO BEGIN
 SetSelect(h); SetSelect(h);
 h:=NextObj(h); h:=NextObj(h);
 END; END;
 END;
 Run(WhileLoop);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

The REPEAT Statement

Repetition Statements

• REPEAT ... UNTIL (...)
PROCEDURE RepeatLoop;

 VAR
 h : HANDLE;
 BEGIN
 h:= FActLayer; h:= FActLayer;
 REPEAT REPEAT
 SetSelect(h); SetSelect(h);
 h:=NextObj(h); h:=NextObj(h);
 UNTIL (h=NIL);
 END;
 Run(RepeatLoop);

• Unlike the WHILE statement, however, the REPEAT statement
evaluates the control expression after executing its controlled
statement. This means that the controlled statement will always
execute at least once.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

The IF Statement

Conditional Statements

• IF ... THEN ...
PROCEDURE theIf;

 VAR
 i : INTEGER;
 BEGIN
 FOR i:=0 TO 9 DO BEGIN
 IF (i<5) THEN IF (i<5) THEN Rect(i,i,i*2,i*2);
 IF (i>5) THEN Oval(i,i,i*2,i*2);
 END;
 END;
 RUN(theIf);theIf);theIf

• IF ... THEN ... ELSE..
PROCEDURE theIf;

 VAR
 i : INTEGER;
 BEGIN
 FOR i:=0 TO 9 DO BEGIN
 IF (i<5) THEN IF (i<5) THEN Rect(i,i,i*2,i*2)
 ELSE Oval(i,i,i*2,i*2);
 END;
 END;
 RUN(theIf);theIf);theIf

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

The CASE Statement

Conditional Statements

• CASE ... OF ... END;
PROCEDURE theIf;

 VAR
 i : INTEGER;
 BEGIN
 FOR i:=0 TO 9 DO BEGIN
 CASE i OF
 2: Rect(-i,-i,i,i);
 4,5: Oval(-i/2,-i/2,i/2,i/2); 4,5: Oval(-i/2,-i/2,i/2,i/2);
 END; END;
 END;
 END;
 RUN(theIf);theIf);theIf

• CASE ... OF ... [OTHERWISE] ... END;
PROCEDURE theIf;

 VAR
 i : INTEGER;
 BEGIN
 FOR i:=0 TO 9 DO BEGIN
 CASE i OF
 0.. 0..4: Rect(-i,-i,i,i);
 OTHERWISE Oval(-i/2,-i/2,i/2,i/2); OTHERWISE Oval(-i/2,-i/2,i/2,i/2);
 END; END;
 END;
 END;
 RUN(theIf);theIf);theIf

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Arrays in VectorScript

• An array in VectorScript is a collection of data values referenced
by a single identifi er. Arrays allow large amounts of data to be
stored and manipulated during script execution.

• VectorScript arrays are indexed.

• VectorScript provides support for two types of arrays:
static arrays (ARRAY), and dynamic arrays (DYNARRAY).
 • Static Array
 • Dynamic Array

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Static Array

Arrays in VectorScript

• Static arrays (ARRAY) are declared using the same method as
used for variables

• Static arrays come in one- and two-dimensional varieties.
The general syntax for one-dimensional static arrays is:

<identifi er> : ARRAY [m..n] OF <data type>;
 e.g. myArray : Array[0..23] OF INTEGER;

• To retrieve a value from an element of a one-dimensional array,
the bracket notation has to be used, e.g.

 j := values[3];
 values[23] := 15.5;
 total := price[i] + tax;

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Static Array

Arrays in VectorScript

• example Script:

 PROCEDURE ExampleArray;
 VAR
 s:STRING;
 i:INTEGER;
 words:ARRAY[1..10] OF STRING;
 BEGIN
 words[1]:=’VectorScript ‘;
 words[2]:=’is ‘;
 words[3]:=’a ‘;
 words[4]:=’fi ne ‘;
 words[5]:=’language.’;

 FOR i:=1 TO 5 DO s:=Concat(s,words[i]);
 Message(s);
 END;
 END;
 Run(ExampleArray);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Static Array

Arrays in VectorScript

• Two-dimensional static arrays extend the syntax of a one-dimensional
array by adding an additional array index to the declaration:

 <identifi er> : ARRAY [m..n,r..s] OF <data type>;

• In the declaration for the two-dimensional array, the fi rst index value
defi nes the number of “rows” in the array, while the second index defi nes
the number of “columns.”

• Accessing an element in a two-dimensional array is not very different
from a one-dimensional array:

j := values[3,5];
 values[23,1] := 15.5;
 total := price[i,j] + tax;

• If we think of the two-dimensional array in terms of rows and columns,
we would use two index values to indicate the row and column position of
the array element to be indexed.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Dynamic Array

Arrays in VectorScript

• Dynamic arrays (DYNARRAY) in VectorScript are similar to static arrays,
with the notable exception of how they are dimensioned, or sized.

• While static arrays are explicitly sized when they are declared in the VAR
block of your script, the size of a dynamic array is declared during the ac-
tual execution of a script.

• Dynamic arrays can also be resized at any point during script execution
to suit your data storage requirements.

• Dynamic arrays can also be specifi ed as one- or two-dimensional. The
general syntax for dynamic arrays are:

• one-dimensional:
<identifi er> : DYNARRAY [] OF <data type>;

• two-dimensional:
<identifi er> : DYNARRAY [,] OF <data type>;

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Dynamic Array

Arrays in VectorScript

• To dimension a dynamic array, VectorScript uses the ALLOCATE keyword
(along with a reference to the array):

ALLOCATE int_values[1..5];

• Extended String Support with CHAR Arrays

• VectorScript also supports a specialized set of functionality when
 using arrays of the CHAR data type.

• Arrays of type CHAR can be used in place of the STRING data type
 in certain operations within VectorScript.

• for more Details to manipulating STRINGS and CHAR data type you can
check the manual

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Dynamic Array

Arrays in VectorScript

• example Script:

PROCEDURE Example_DynArray;
 VAR
 i,j,numtxt : INTEGER;
 h : HANDLE;
 textStore: DYNARRAY[] OF STRING;
 BEGIN
 numtxt:=Count(((T=Text) & (SEL=TRUE)));
 j:=1;
 ALLOCATE textStore[1..numtxt];
 h:=FSActLayer;
 WHILE (h <> NIL) DO BEGIN
 IF (GetType(h) = 10) THEN BEGIN
 textStore[j]:=GetText(h);
 j:=j+1;
 END;
 h:=NextSObj(h);
 END;
 ALLOCATE textStore[1..numtxt+2];
 TextOrigin(2,2);
 CreateText(‘New text 1’);
 numtxt:=numtxt+1;
 textStore[numtxt]:=GetText(LNewObj);
 TextOrigin(2,4);
 CreateText(‘New text 2’);
 numtxt:=numtxt+1;
 textStore[numtxt]:=GetText(LNewObj);
 FOR i:=1 TO numtxt DO BEGIN
 Message(‘Array element ‘,i,’ contains ‘, textStore[i]);
 Wait(1);
 END;
 END;
 Run(Example_DynArray);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Structures

• A structure in VectorScript is a collection of one or more variables
which are grouped together under a single identifi er for conven-
ient handling.

• Structures help to organize complex data into groupings that
may be treated as a single “unit” instead of separate entities.

• The general syntax for a structure declaration is:

 <structure name> = STRUCTURE
 <identifi er>[,<identifi er>,…] : <data type>;
 <identifi er>[,<identifi er>,…] : <data type>;

• Members within a structure may be referred to directly using the
. (structure member) operator.

 <structure name>.<member name>

• This format, also known as “dot notation,” gives you direct access
to the value within the specifi ed member.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

Structures

• Example:

 PROCEDURE Example_structure;

 TYPE
 HANSPETER = STRUCTURE HANSPETER = STRUCTURE
 vorname, nachname : STRING; vorname, nachname : STRING;
 END; END;

 ADRESSE = STRUCTURE ADRESSE = STRUCTURE
 strasse : STRING; strasse : STRING;
 hausnummer: INTEGER; hausnummer: INTEGER;
 stadt : STRING; stadt : STRING;
 END; END;

 VAR
 person1: HANSPETER;
 BEGIN

 Message(
 END;
 Run(Example_structur); Run(Example_structur); R

person1.vorname:= ‘Uschi’;
person1.nachname:=’Biedermann’;

 Message(person1.vorname, ‘ ‘ ,person1.nachname);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

User Defi ned Functions

• User-Defi ned Procedures.

• User-Defi ned Functions.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

User-Defi ned Procedures

User Defi ned Functions

• with user defi ned functions, you can break large script tasks into
smaller ones.

• Another term for user-defi ned functions is
subroutines which, as the name implies, are pieces of
script code which perform tasks within the main script.

• User-defi ned procedure subroutines are the most common type of
subroutine.

• User-defi ned procedures are declared after the defi nition (CONST,
TYPE, and VAR) blocks of a script, but before the script body.

• Just like a script, subroutines may have any of the standard Vector-
Script defi nition blocks (LABEL, CONST, TYPE, or VAR) as well as a script
body.

• The general syntax for user-defi ned procedures is:

 PROCEDURE <procedure identifi er>[(<parameter list>)]
e.g. PROCEDURE SumOfSquares(limit:INTEGER;VAR result:INTEGER);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

User-Defi ned Procedures

User Defi ned Functions

• Following the subroutine identifi er is the parameter list for the sub-
routine. This optional list defi nes a method of moving data in and out
of the subroutine.

• While it is possible to refer to values in the enclosing program
blocks directly, doing so would eliminate the ability to easily use the
subroutine in other code, which is one of the major advantages of us-
ing subroutines.

• The parameter list declares a set of identifi ers (and their associated
data types) that will be used to pass data to and from the subroutine.

• The VAR keyword indicates an identifi er that will be used to pass
data out of the subroutine to the calling code.

• Identifi ers in the parameter list can be treated as variables and used
within the subroutine script code.

• By calling the subroutine, the order and types of the variable identi-
fi ers must exactly match those in the declaration.

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

User-Defi ned Procedures

User Defi ned Functions

• example:

 Procedure testSubroutine;

 VAR
 myPosX,myPosY : REAL;
 myRadius, myDiameter :INTEGER;

 {SUBROUTINES} {SUBROUTINES}
 Procedure CircelByPointAndRadius(rad, pointX, pointY : REAL; VAR diameter:INTEGER); Procedure CircelByPointAndRadius(rad, pointX, pointY : REAL; VAR diameter:INTEGER);
 BEGIN BEGIN
 diameter:=2*rad; diameter:=2*rad;
 oval(oval(pointX-rad, pointY-rad, pointX+rad, pointY+rad);
 END; END;
 {End of declaration subroutine}

 BEGIN;
 myPosX:= 23.5;
 myPosY:=myPosX;
 myRadius:= 50;
 CircelByPointAndRadius(myRadius, myPosX, myPosY, myDiameter);
 END;
 Run(testSubroutine);

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

User-Defi ned Functions

User Defi ned Functions

• User-defi ned functions incorporate all the features of user-defi ned procedures,
but they have one additional feature which makes them extremely useful
when writing scripts: an associated value.

• User-defi ned functions, unlike procedures, can pass data out of the subroutine
through a return value, which associates the value with the subroutine identifi er.

• User-defi ned function declarations have one additional requirement: a return
value type after the parameter list. This data type indicates what type of data
will be passed through the return value mechanism and will be associated
with the identifi er.

• The general syntax for user-defi ned functions is:

 FUNCTION <procedure identifi er>[(<parameter list>)]:<return value type>

| || | caad:hbt:arch:ethz || | | | | | | | | | | | | | | | | VectorScript: Introduction To VectorScript

User-Defi ned Functions

User Defi ned Functions

• example:

PROCEDURE SubrExample2;
 VAR
 n,sum:INTEGER;

 FUNCTION SumOfSquares(limit:INTEGER):INTEGER; FUNCTION SumOfSquares(limit:INTEGER):INTEGER;
 BEGIN BEGIN
 SumOfSquares:= limit*(limit+1)*(2*limit+1)/6; SumOfSquares:= limit*(limit+1)*(2*limit+1)/6;
 END; END;

 BEGIN
 n:=IntDialog(‘Enter the limit value’,’0’);
 {sum of squares for the fi rst n integers}
 sum:= SumOfSquares(n); sum:= SumOfSquares(n);
 Message(‘The sum of squares is: ‘,sum);
 END;
 Run(SubrExample2);

